Moments of Inertia



Introduction

« A distributed loading acts perpendicular to
an area and its intensity varies linearly, the
computation of the moment of the loading
distribution about an axis will involve a
guantity called the moment of inertia of the
area or the second moment of area.



Applications

0 Many structural members like
beams and columns have cross
sectional shapes like |, H, C, etc

0 Why do they usually not have solid
rectangular, square, or circular cross
sectional areas?

0 What primary property of these
members influences design decisions?

O How can we calculate this property?

1 What parameters of the cross sectional area influence the
designer’s selection?

U How can we determine the value of these parameters for a given
area?



Rectangular and Polar Moments of Inertia

1 For the differential area dA shown ¥

in the figure > -
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Rectangular and Polar Moments of Inertia

d The moment of inertia of dA about the pole O (z-axis) is
dl, = r’dA

d By integration, the moment of inertia of the entire area about O
is estimated as

I = frg dA Pollar moments
of inertia

O Because x?2 + y2 =r2, it is clear that (]2 — Ix + ij

1 The Mol is also referred to as the second moment of area and
has units of length to the fourth power (m* or in%).




Rectangular and Polar Moments of Inertia

O The Mol of an element involves the square of the distance from the
inertia axis to the element

 Thus an element whose coordinate is neqgative contributes as much
to the moment of inertia as does an equal element with a positive
coordinate of the same magnitude

 Consequently the area moment of inertia about any axis is always
a positive quantity

4 In contrast, the first moment of the area, which was involved in the
computations of centroid, could be either positive, hegative, or zero

d The choice of the coordinates to use for the calculation of Mol is
important

1 Rectangular coordinates should be used for shapes whose
boundaries are most easily expressed in these coordinates

O Polar coordinates will usually simplify problems involving
boundaries which are easily described inrand 6




The Importance of Mol for Areas

1 Consider three different possible cross sectional shapes and areas
for the beam AB. All have the same total area and, assuming they are
made of same material, they will have the same mass per unit length

4 For the given vertical loading P on the beam, which shape will
develop less internal stress and deflection? Why?

O The answer depends on the Mol of the beam about the x-axis. It
turns out that section A has the highest Mol because most of the area
Is farthest from the x-axis. Hence, it has the least stress and deflection



Radius of Gyration of An Area

 Consider an area A, as shown in figure a,
which has rectangular moments of inertia Ix,
and |, and a polar moment of inertia I, about
O

.___‘__:

J We now visualize this area as concentrated
into a long narrow strip of area A a distance
kx from the x-axis, figure b

()

[ By definition the moment of inertia of the
strip about the x-axis will be the same as that
of the original area if k. 2A = |, g

— — .
=

d The distance Kk, is called the radius of
gyration of the area about the x-axis . Tm



Radius of Gyration of An Area
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U A similar relation for the y-axis is written by
considering the area as concentrated into a
narrow strip parallel to the y-axis as shown in

figure c

U Also, if we visualize the area as concentrated
into a narrow ring of radius k, as shown in figure 1

d, we may express the polar moment of inertia
as k2A =1,
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U In summary we write
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Radius of Gyration of An Area

O The radius of gyration has units of length and gives an
indication of the spread of the area from the axes

O This characteristic is important when designing columns

O The radius of gyration, then, is a measure of the distribution of
the area from the axis in guestion

O A rectangular or polar moment of inertia may be expressed by
specifying the radius of gyration and the area

(B2 2 en?)

O Thus, the square of the radius of gyration about a polar axis
equals the sum of the squares of the radii of gyration about the
two corresponding rectangular axes




Transfer of Axes

O The Mol of an area about a |
noncentroidal axis may be easily :
expressed in terms of the Mol :
about a parallel centroidal axis |
|
|
I

4 In the shown figure, the X -y,

axes pass through the centroid C
of the area i

O Using the so-called parallel-
axis theorems, the Mol of the area
about the x-y axes can be
expressed as

L. =1 + Ad? -
S 3 I,=1, + Ad

1

L=T1 + Ad?>




Parallel-axis Theorems

4 Two points in particular should be noted. First, the axes
between which the transfer is made must be parallel, and second,
one of the axes must pass through the centroid of the area

A If a transfer is desired between two parallel axes neither of
which passes through the centroid, it is first necessary to transfer
from one axis to the parallel centroidal axis and then to transfer
from the centroidal axis to the second axis

4 The parallel-axis theorems also hold for radii of gyration as
follows:

k% = k% + d%

O where k is the radius of gyration about a centroidal axis parallel
to the axis about which k applies and d is the distance between
the two axes



Example

Determine the moments of inertia of the rectangular area about the centro-
idal x4- and y,-axes, the centroidal polar axis z, through C, the x-axis, and the
polar axis z through O.
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Solution

Solution. For the calculation of the moment of inertia I, about the x-axis, a
horizontal strip of area b dy is chosen so that all elements of the strip have the
same y-coordinate. Thus,

h/2
[ f y2 dA] TS f y%b dy = 75bh® Ans.
~h/2

By interchange of symbols, the moment of inertia about the centroidal y,-axis is
Rt !
Lo ﬁhb3 Ans.
The centroidal polar moment of inertia is
I, =1I + 1] I, = 55k + hb%) = LAB? + h?) Ans.
By the parallel-axis theorem the moment of inertia about the x-axis is

2
[ ="T, +-Ad.2] I, = {sbh® + bh (g) = zbh3 = 2AR? Ans.



Solution

We also obtain the polar moment of inertia about O by the parallel-axis theorem,
which gives us

o
[l =74 Ad?%) I, - A0 + b)) + A [(5) + (5) ]

I, = 3A0% + h? Ans.



Example

Determine the moments of inertia of the triangular area about its base and
about parallel axes through its centroid and vertex.




Solution

Solution. A strip of area parallel to the base is selected as shown in the figure,
and it has the areadA = xdy = [(h — y)b/h] dy. By definition
h 3 4 ]h bh3

yzh;ybdy=b[;_y_ i Ans.

= 2 —_
UL, fyd’” L f Bl - 12

0

By the parallel-axis theorem the moment of inertia I about an axis through the
centroid, a distance h/3 above the x-axis, is

» - bR ENIRN - BR®
— — 2 — — — g—— — = e
[ I — Ad~] V3 12 (2 )(3) 36 Ans.

A transfer from the centroidal axis to the x'-axis through the vertex gives

= bh? bh\(2h\* bh®
—— 2 , = — e P— i S—
I =1 + Ad~®] L 36 (2)(3) 1 Ans.



Example

Determine the moment of inertia of the area under the parabola about the
x-axis. Solve by using (a) a horizontal strip of area and (b) a vertical strip of area.




Solution

Solution. The constant & = % is obtained first by substituting x = 4 and
y = 3 into the equation for the parabola.

(a) Horizontal strip. Since all parts of the horizontal strip are the same dis-
tance from the x-axis, the moment of inertia of the strip about the x-axis is y? dA

where dA = (4 — x) dy = 4(1 — ¥%/9) dy. Integrating with respect to y gives
us

3 2
2
I, = f y2dA] I, = f 4y* (1 - %) dy = % = 14.40 (units)* Ans.
0
"

dy

| A Solution (a)
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Solution

(b) Vertical strip. Here all parts of the element are at different distances from
the x-axis, so we must use the correct expression for the moment of inertia of
the elemental rectangle about its base, which, from Sample Problem A/1, is
bh3/3. For the width dx and the height y the expression becomes

dl, = 3dx)y®

To integrate with respect to x, we must express y in terms of x, which gives

y = 3.x/2, and the integral becomes
4 3
3 72
Li=3 [ (—‘/;) dx = — = 14.40 (units)* Ans.
0\ 2 5
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Area Moments of Inertia
Composite Areas

d It is frequently necessary to calculate the moment of
iInertia of an area composed of a number of distinct parts of

simple and calculable geometric shape

1 Because a moment of inertia is ~— 100 mm —
the integral or sum of the : B
products of distance squared T 75 mm

times element of area, it follows
that the moment of inertia of a - m =1
positive area is always a positive U
quantity

75 mm

!




Area Moments of Inertia
Composite Areas

ad The moment of inertia of a composite area about a
particular axis is therefore simply the sum of the
moments of inertia of its component parts about the
same axis

It is often convenient to regard a composite area as
being composed of positive and negative parts

O We may then treat the moment of inertia of a negative
area as a negative quantity



Composite Areas
Steps for Analysis

. Divide the given area into its simpler shaped parts

. Locate the centroid of each “simpler” shaped part and indicate the
perpendicular distance from each centroid to the desired
reference axis

. The Mol of these “simpler” shaped areas about their centroidal
axes are found inside back cover of the textbook

. Determine the Mol of each “simpler’ shaped part about the
desired reference axis using the parallel-axis theorem

. When a composite area is composed of a large number of parts,
it is convenient to tabulate the results for each of the parts in
terms of its area A, its centroidal moment of inertia |, the distance
d from its centroidal axis to the axis about which the moment of
inertia of the entire section is being computed, and the product
AdZ.



Composite Areas
Steps for Analysis

6. The Mol of the entire area about the reference axis is determined
by performing an algebraic summation of the individual Mols
obtained in Step 4. (Please note that Mol of a hole is subtracted)

X 3

Part Area, A d d, Ad ~ Ad * I, '

[ 1 + ) " . a7 2
Sums SA | | ZAd,? YAd * | o >,

/. From the sums of the four columns, then, the moments of inertia
for the composite area about the x- and y-axes become

: . 2
., + ZAd,

L o 2
y + ZAd,

|
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Moments of Inertia of Composite Areas

= 1
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Example

Calculate the moment of inertia and radius of gyration about the x-axis for

the shaded area shown.
'?
30 mm
30 mm
] AR
—40 mm’Jh40 mm -
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Solution

Solution. The composite area is composed of the positive area of the rectangle
(1) and the negative areas of the quarter circle (2) and triangle (3). For the
rectangle the moment of inertia about the x-axis, from Sample Problem A/1 (or
Table D/3), is

I, = 3Ah* = £(80)(60)(60)* = 5.76(10°) mm*

From Sample Problem A/3 (or Table D/3), the moment of inertia of the negative
quarter-circular area about its base axis x' is

R o (asDag Sor 6 4
I, = 4( 1 ) TR (30)* = —0.1590(10°) mm

We now transfer this result through the distance r = 4r/(3m) = 4(30)/(37) =
12.73 mm by the transfer-of-axis theorem to get the centroidal moment of inertia
of part (2) (or use Table D/3 directly).

_ m(30)
4

I=1-Ad% I = -0.1590(108) - [ (12.73)2]

—0.0445(10%) mm*



Solution

The moment of inertia of the quarter-circular part about the x-axis is now

7(30)2
4

I =1 + Ad?] I, = —0.0445(10°) + [— ] (60 — 12.73)%

= —1.624(10°) mm*

Finally, the moment of inertia of the negative triangular area (3) about its base,
from Sample Problem A/2 (or Table D/3), is

I

b 4

= —-bh3 = —35(40)(30)> = —0.09(10°) mm*

The total moment of inertia about the x-axis of the composite area is,
consequently,

I. = 5.76(10%) — 1.624(10°) — 0.09(10°) = 4.05(10°) mm* Ans.

The net area of the figure is A = 60(80) — $7(30)> — 5(40)(30) = 3490 mm?
so that the radius of gyration about the x-axis is

k. = JI.JA = J4.05(10%)/3490 = 34.0 mm Ans.



Example

Compute the moment of inertia for the composite area in
the shown figure

-~— 100 mm —

T
25 n& 75 mm
B W |
W B

75 mm

-




Solution

Composite Parts. The composite area is obtained by subtracting
the circle from the rectangle as shown in the figure. The centroid
of each area is located in the figure

. =— 100 mm —
Parallel-Axis Theorem. The
moments of inertia about the x axis ! 75 mm
: : 75 mm S
are determined using the parallel- l
axis theorem and the data in the T = = @
table on the inside back cover L
l

Circle:

I, = I, + Ad;

1
Zw(zsf + w(25)%(75)% = 11.4(10%) mm*



Solution

Rectangle:

= 11—2(100)(150)3 + (100)(150)(75)* = 112.5(10%) mm*

Summation:
The moment of inertia for the composite area is thus
I, = —11.4(10°) + 112.5(10°)
= 101(10°) mm*



Example

SOLUTION:

Y « Compute the moments of inertia of the
~—— 240 : ) )
LA | bounding rectangle and half-circle with
7/ . respect to the x axis.
r=90 mm

« The moment of inertia of the shaded area is
obtained by subtracting the moment of
* inertia of the half-circle from the moment
of inertia of the rectangle.

Determine the moment of inertia
of the shaded area with respect to
the x axis.



e— 240 mrn———»l
/

r=90 mm /L
£

a=38.2 mm

b=81.8 mm

_ 4r _(4)(90)
3 3
b=120-a=81.8mm

A=im?=1r(90)

—12.72 x103mm?2

=38.2 mm

SOLUTION:

« Compute the moments of inertia of the bounding
rectangle and half-circle with respect to the x axis.
Rectangle:

I, =1bh® =1(240)(120)=138.2x10°mm*

Half-circle:
moment of inertia with respect to A4,

| =1ar% = 17(90)* = 25.76 x10° mm*

moment of inertia with respect to x’,

[ =1, —Aa’ =(25.76x10° ) (12.72x10°)38.2?)
=7.20x10°mm’
moment of inertia with respect to X,
Iy + Ab? =7.20x10° + (12.72x10° (81.8)°
92.3x10°mm*

ly



« The moment of inertia of the shaded area is obtained by
subtracting the moment of inertia of the half-circle from
the moment of inertia of the rectangle.

l = 138.2x10%mm* — 92.3%x10%mm*

l, =45.9x10°mm*




