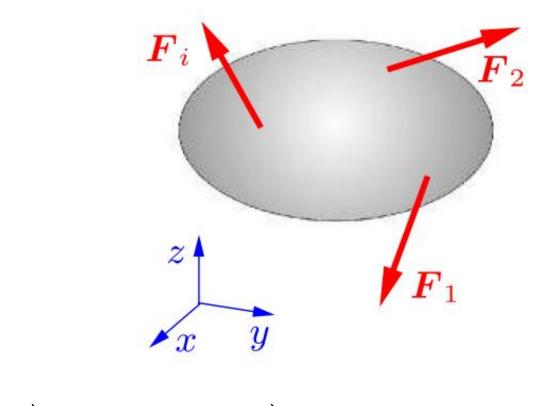
CHAPTER 3

EQUILIBRIUM in 3D

 We extend our principles and methods developed for two-dimensional equilibrium to the case of threedimensional equilibrium.

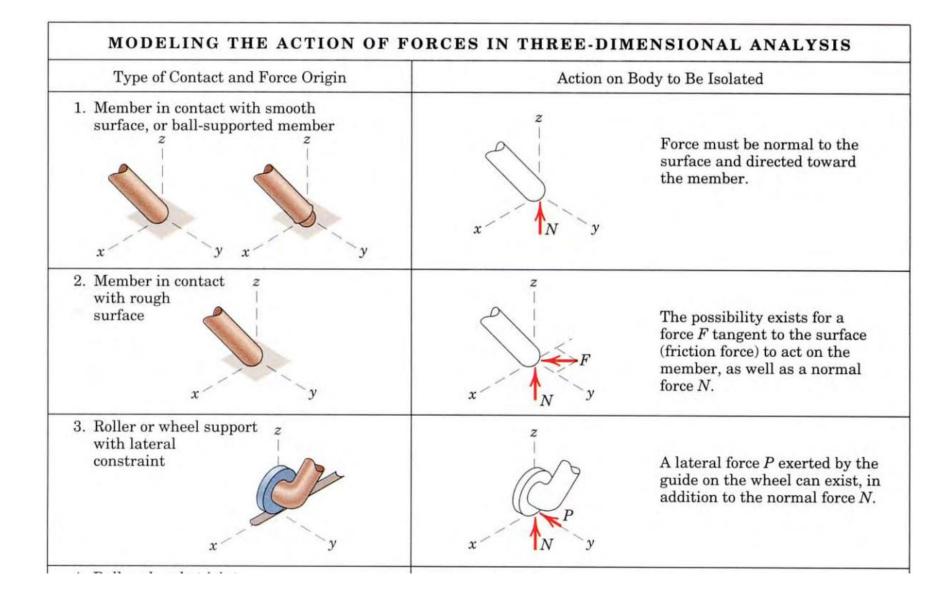
$$\sum \vec{F} = 0$$
 , $\sum \vec{M} = 0$

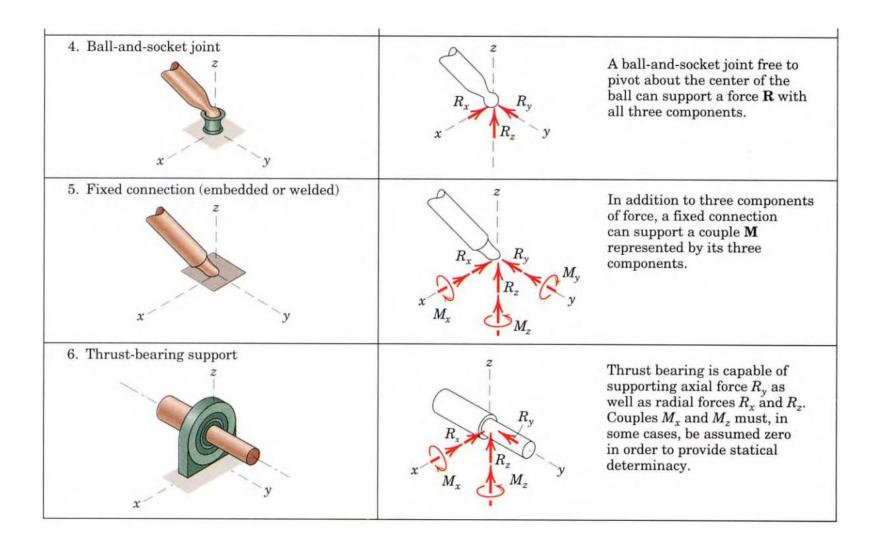


$$\sum \vec{F} = 0 \quad , \quad \sum \vec{M} = 0$$

Free-Body Diagram

- For drawing free-body diagram of 3D problems, we use same steps with 2D problems.
- <u>Step 1</u>. Decide which system to isolate.
- <u>Step 2</u>. Next *isolate* the chosen *system* by drawing a *diagram* which represents its complete *external boundary*.
- <u>Step 3</u>. Identify all forces which act on the isolated system as applied by the removed contacting and attracting bodies.
- <u>Step 4</u>. Show the choice of coordinate axes directly on the diagram.

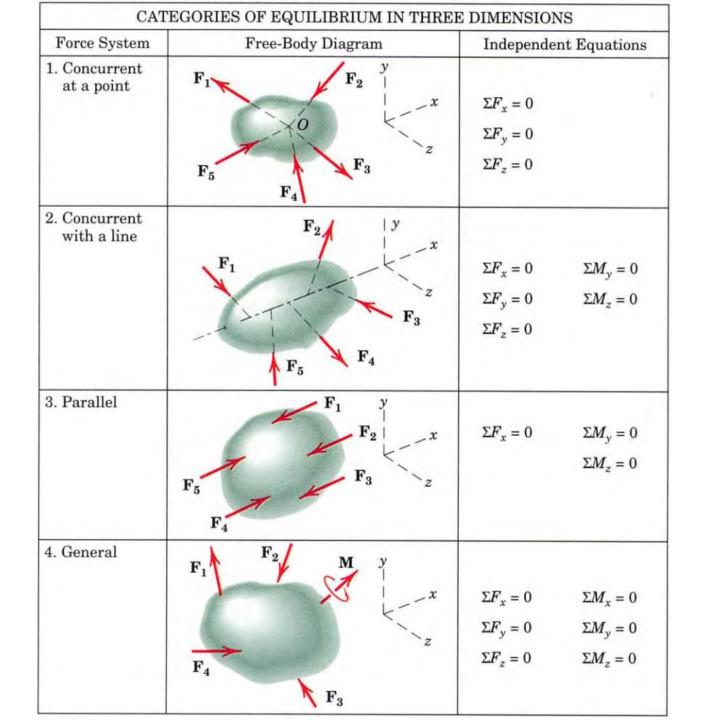




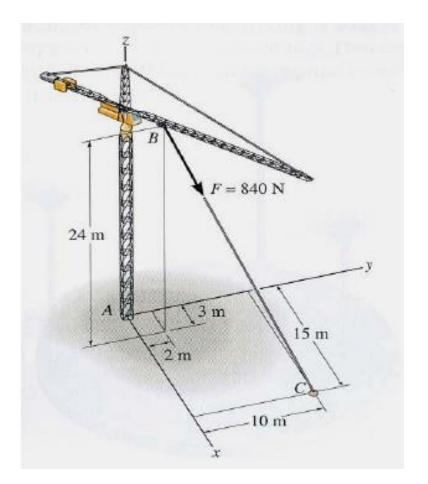
Equilibrium Conditions

 All resultant *forces* and *moments* on the each *three* axes must be zero.

$$\sum F_{x} = 0 , \sum F_{y} = 0 , \sum F_{z} = 0$$
$$\sum M_{x} = 0 , \sum M_{y} = 0 , \sum M_{z} = 0$$

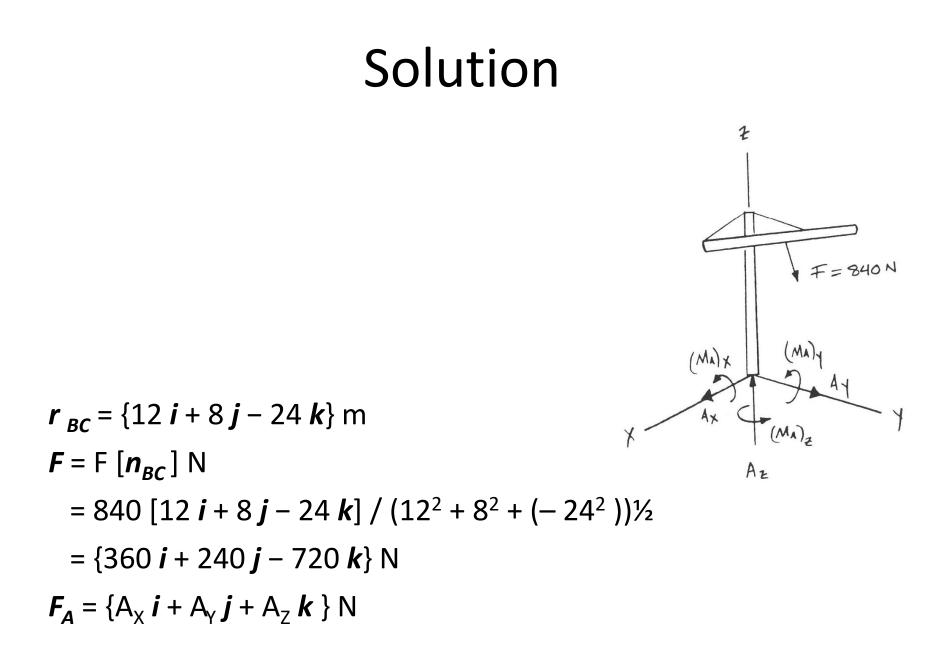


Example



Given:The cable of the tower crane is subjected to 840 N force. A fixed base at A supports the crane.

Find: Reactions at the fixed base A.



Solution

• From Equilibrium equation we get,

 $F + F_A = 0$

{(360 + A_x) \mathbf{i} + (240 + A_y) \mathbf{j} + (-720 + A_z) \mathbf{k} } = 0

• Solving each component equation yields

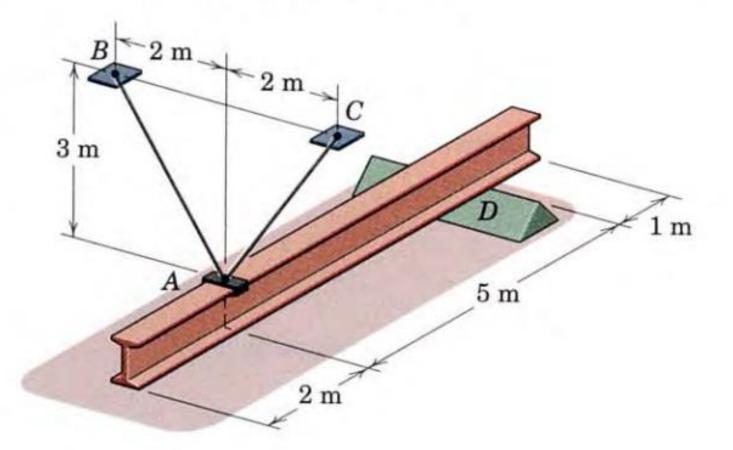
•
$$A_{Y} = -240 \text{ N}$$
, and $A_{Z} = 720 \text{ N}$.

Sum the moments acting at point A.

$$\sum \mathbf{M} = \mathbf{M}_{\mathbf{A}} + \mathbf{r}_{\mathbf{AC}} \times \mathbf{F} = 0$$

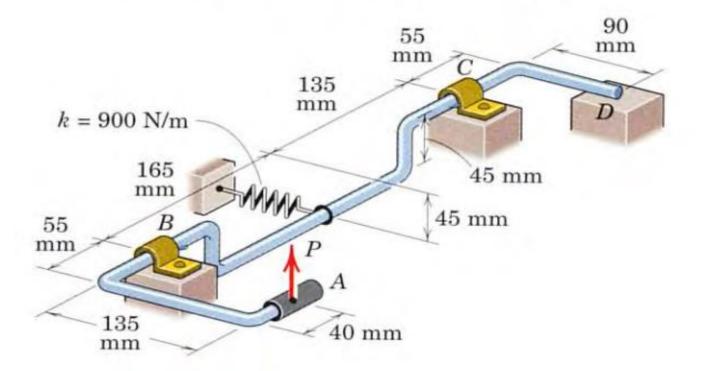
= M_{AX} **i** + M_{AY} **j** + M_{AZ} **k** + $\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 15 & 10 & 0 \\ 360 & 240 & -720 \end{vmatrix} = 0$

= M_{AX} **i** + M_{AY} **j** + M_{AZ} **k** - 7200 **i** + 10800 **j** = 0 M_{AX} = 7200 N · m, M_{AY} = -10800 N · m, and M_{AZ} = 0 Note: For simpler problems, one can directly use three scalar moment equations, $\sum M_X = \sum M_Y = \sum M_Z = 0$ 3/64 The uniform I-beam has a mass of 60 kg per meter of its length. Determine the tension in the two supporting cables and the reaction at D.



Problem 3/64 Results: T=1698N, D=1884N

3/80 The spring of modulus k = 900 N/m is stretched a distance $\delta = 60$ mm when the mechanism is in the position shown. Calculate the force P_{\min} required to initiate rotation about the hinge axis *BC*, and determine the corresponding magnitudes of the bearing forces which are perpendicular to *BC*. What is the normal reaction force at *D* if $P = P_{\min}/2$?



Results: Pmin=18N, B=30.8, C=29.7N, D=13.5N

example: A uniform pipe cover of radius 240 mm and mass 30 kg is held in a horizontal position by the cable CD. The bearings at A and B are self-aligning and bearing A resists thrust. Determine the cable tension and the reactions at A and B.

