CHAPTER 3

EQUILIBRIUM in 2D

Introduction

- In this chapter, we shall make continuous use of the concepts developed in chapter 2 involving *forces, moments, couple,* and *resultants* as we apply the principles of *equilibrium*.
- A *particle* is said to be in *equilibrium* if it remains at *rest* if originally at rest, or has a *constant velocity* if originally in motion.

 When a body is in *equilibrium*, the resultant of all *forces* acting on it is *zero*. Thus, the resultant force R and the resultant couple M are both *zero*, and the equilibrium eqn's:

 $R = \sum F = 0$ $M = \sum M = 0$

$$\sum F_{ix} = 0 \,, \quad \sum M_i^{(A)} = 0 \,, \quad \sum M_i^{(B)} = 0$$

$$\sum F_{iy} = 0$$
, $\sum M_i^{(A)} = 0$, $\sum M_i^{(B)} = 0$

Example: The gusset plate is subjected to the forces of four members. Determine the force in member *B* and its proper orientation θ for equilibrium. The forces are concurrent at point *O*. Take *F* = 12 kN. (T=14.3kN, θ=36.27°)

Mechanical System Isolation

- A mechanical system is defined as a body or group of bodies which can be isolated from all other bodies. This isolation is accomplished by means of the free-body diagram.
- The free-body diagram is the most important single step in the solution of problems in mechanics.

• An example of system isolation

Type of Contact and Force Origin	Action on Body to Be Isolated	
6. Pin connection	Pin Pin free not free to turn to turn R_x R_x R_y R_y M_y	A freely hinged pin connection is capable of supporting a force in any direction in the plane normal to the axis; usually shown as two components R_x and R_y . A pin not free to turn may also support a couple M .
7. Built-in or fixed support		A built-in or fixed support is capable of supporting an axial force F , a transverse force V (shear force), and a couple M (bending moment) to prevent rotation.

Construction of Free-Body Diagrams

- <u>Step 1</u>. Decide which system to isolate.
- <u>Step 2</u>. Next *isolate* the chosen *system* by drawing a *diagram* which represents its complete *external boundary*.
- <u>Step 3</u>. Identify all forces which act on the isolated system as applied by the removed contacting and attracting bodies.
- <u>Step 4</u>. Show the choice of coordinate axes directly on the diagram.

	Body	Incomplete FBD
1. Bell crank supporting mass <i>m</i> with pin support at <i>A</i> .	Flexible cable A	T A mg
2. Control lever applying torque to shaft at O.	Pull P	P Fo
3. Boom OA, of negligible mass compared with mass m. Boom hinged at O and supported by hoisting cable at B.	A B M M	T

	Body	Wrong or Incomplete FBD
1. Lawn roller of mass m being pushed up incline θ .	P	P mg N
2. Prybar lifting body A having smooth horizontal surface. Bar rests on horizontal rough surface.	A	R P N N
3. Uniform pole of mass <i>m</i> being hoisted into posi- tion by winch. Horizontal sup- porting surface notched to prevent slipping of pole.	Notch	T mg R

Equilibrium Conditions

 We defined *equilibrium* as the condition in which the *resultant* of *all forces* acting on a body is *zero*. Stated in another way, a body is in *equilibrium* if *all forces* and *moments* applied to it are *in balance*.

$$\Sigma F_x = 0$$
 $\Sigma F_y = 0$ $\Sigma M_O = 0$

CATEGORIES OF EQUILIBRIUM IN TWO DIMENSIONS		
Force System	Free-Body Diagram	Independent Equations
1. Collinear	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_3 $-x$	$\Sigma F_x = 0$
2. Concurrent at a point	\mathbf{F}_1 \mathbf{F}_2 \mathbf{F}_2 \mathbf{F}_3 \mathbf{F}_4 \mathbf{F}_3	$\Sigma F_x = 0$ $\Sigma F_y = 0$
3. Parallel	$ \begin{array}{c} $	$\Sigma F_x = 0$ $\Sigma M_z = 0$
4. General	F_1 F_2 F_3 y F_4 F_4 F_4	$\Sigma F_x = 0 \qquad \Sigma M_z = 0$ $\Sigma F_y = 0$

Two-Force Member

 You should be alert to two frequently occurring equilibrium situations. The first situation is the *equilibrium* of a *body* under the *action* of *two forces* only.

Two-force members

Two-force member

Three-Force Member

 The second situation is a *three-force member*, which is a *body* under the *action* of *three forces*.

$$\frac{F_1}{\sin\alpha} = \frac{F_2}{\sin\theta} = \frac{F_3}{\sin\beta}$$

EXAMPLES EQUILIBRIUM in 2D

• Find the forces on the ropes AD and AB if the engine Block is 250 kg.

• Determine the reaction forces at joint A .

• Determine the reaction forces at joints.

• Determine the magnitude P of the vertical force required to lift the wheelbarrow free of the ground at point B. The combined weight of the wheelbarrow and its load is 240 lb with center of gravity at G.

P=40 lb

- The pin A, which connects the 200 kg steel beam with center of gravity at G to the vertical column, is welded both to the beam and to the column. To test the weld, the 80 kg man loads the beam by exerting a 300 N force on the rope which passes through a hole as shown. Calculate the moment M supported by the pin.
 - **Answer: M**=4.94 kNm (CCW)

