AE 104 STATICS

CHAPTER 2

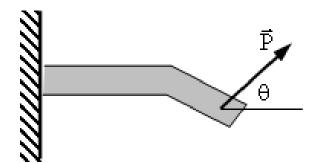
FORCE SYSTEMS

Introduction

 In this chapter, the properties and effects of various kinds of forces which act on engineering structures and mechanisms will be examined.

Force

 A *force* has been defined as the *action* of one body on another. We find that *force is a vector* quantity.

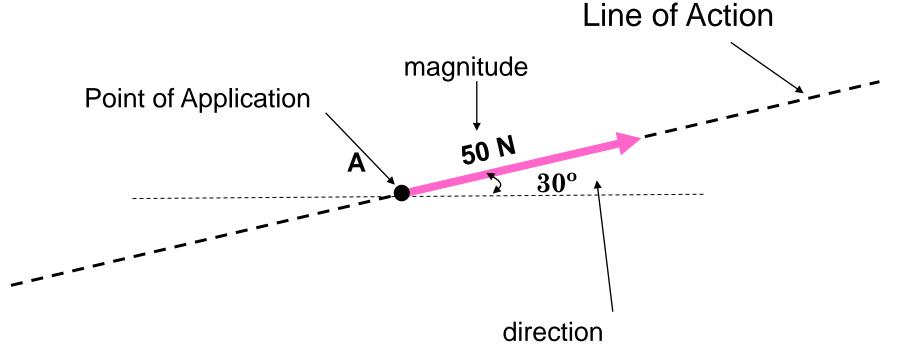


 The action of a force on a body can be separated into two effects,

External effect:

Internal effect:

The complete *specification* of the action of a *force* must include its *magnitude, direction,* and *point of application,* in which case it is treated as a fixed vector.



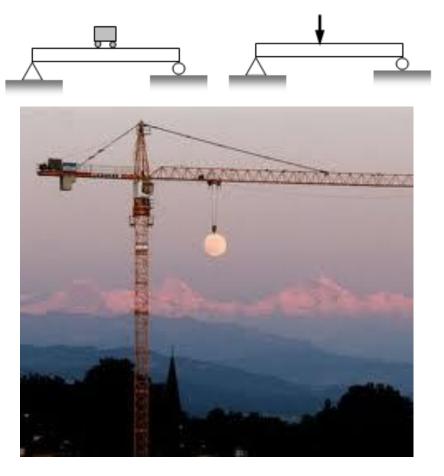
Since the vector has a well defined point of application, it is a fixed vector, therefore can not be moved without modifications

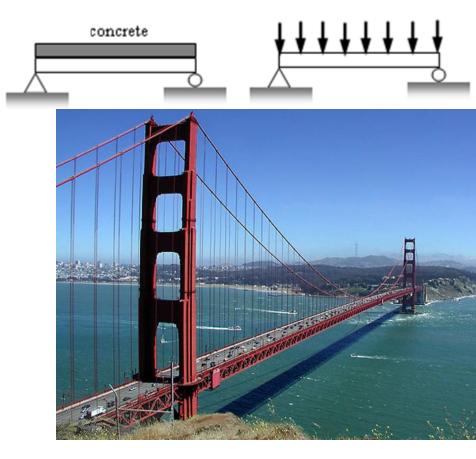
Classification of Forces

- Body force: Forces that are applied on hole body.
- Surface Force: Forces that are apllied on surfaces of body.
- Concentrated (single) Force: When the dimensions of the area on which forces are applied are very small compared with the other dimensions of the body, The forces can be considered as concentrated at a point with negligible loss of accuracy.
- Distributed forces: Actually every contact force is applied over a finite area and is therefore a distributed force.

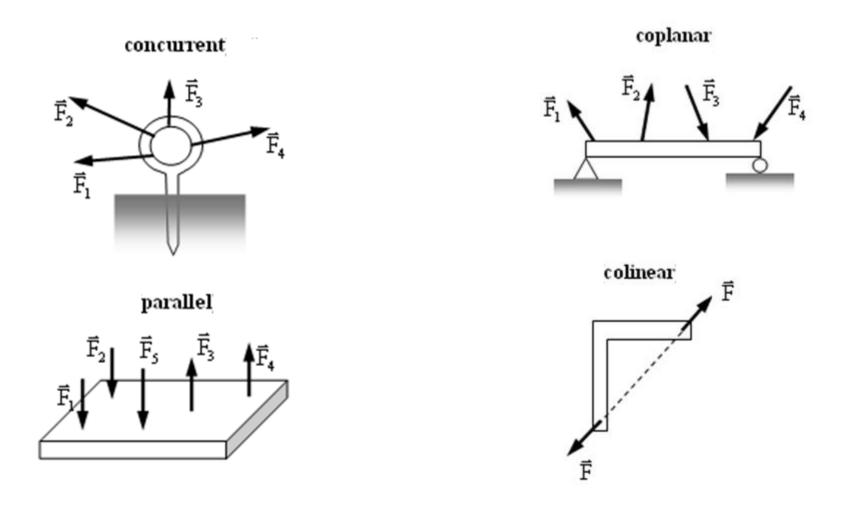
Single Load

Distributed Load

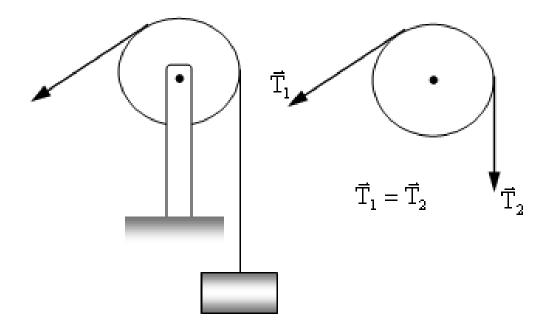




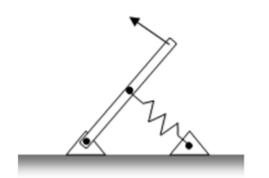
Forces due to application

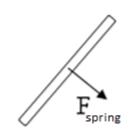


Forces on Pulley

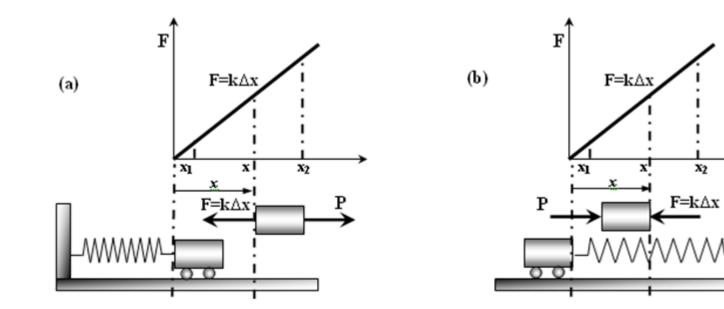


Forces on springs

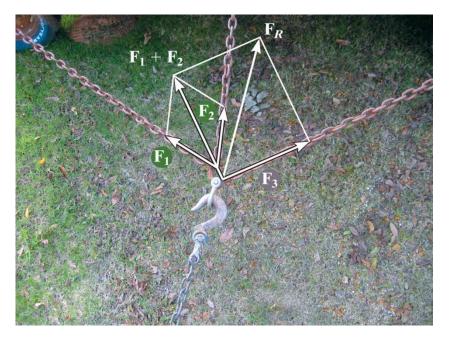


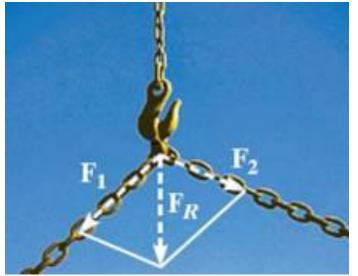


F_{spring}=k∆x



Addition of Forces in a Plane

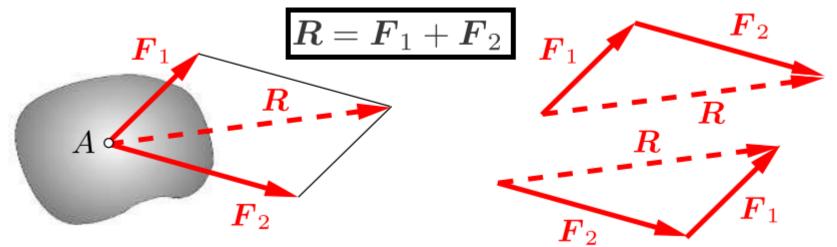


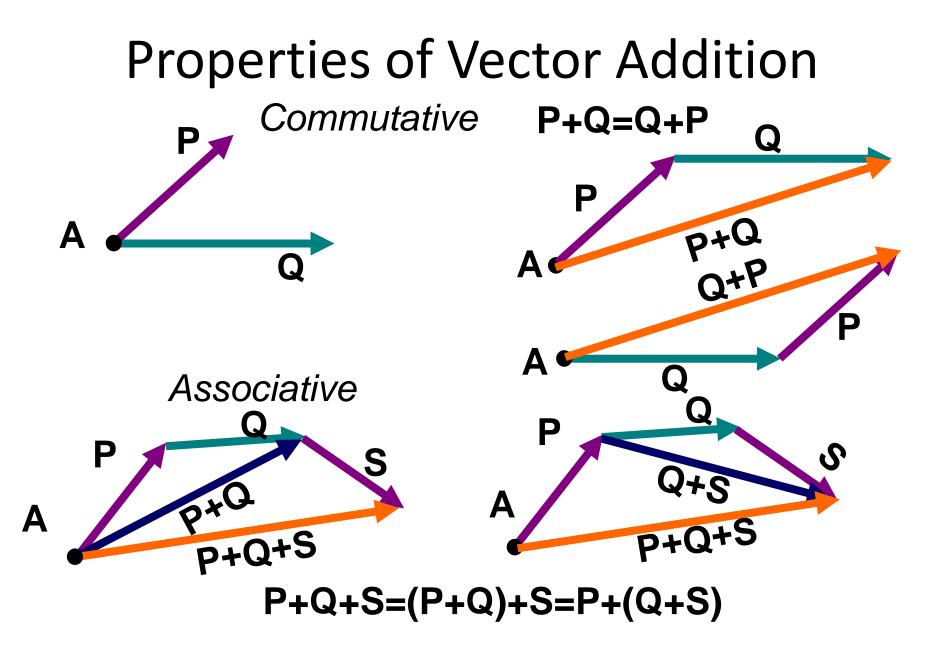


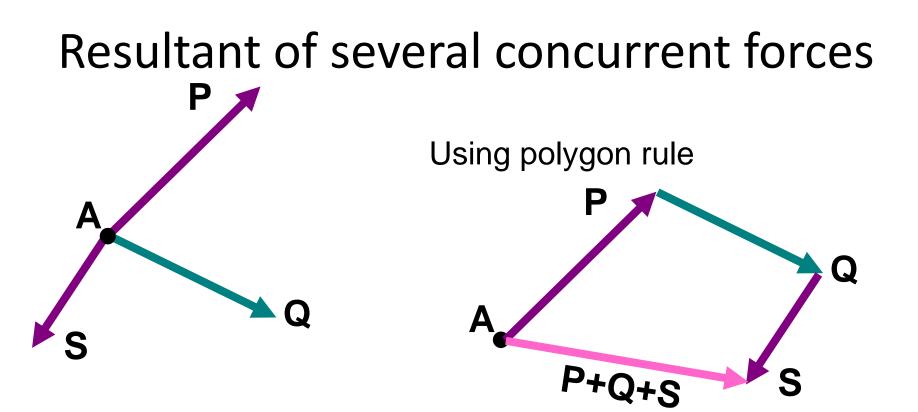
- There are some concurrent forces acting on the hook due to the chains.
- We need to decide if the hook will fail (bend or break)?
- To do this, we need to know the resultant force acting on the hook.

Addition of Forces in a Plane

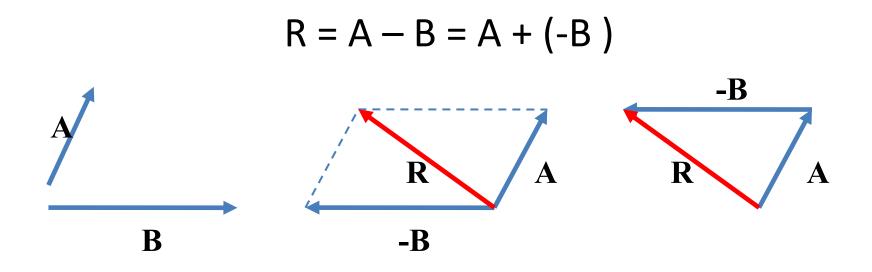
The *effect* of two nonparallel *forces* F1 and F2 acting at a *point A* of a body is the same as the effect of the *single force R* acting at the same point and *obtained* as the *diagonal* of the *parallelogram* formed by F1 and F2 or it can be *obtained* by using *triangle method*.

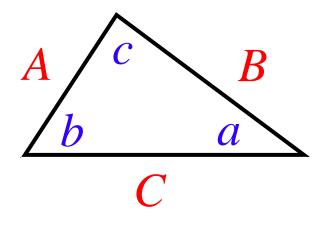


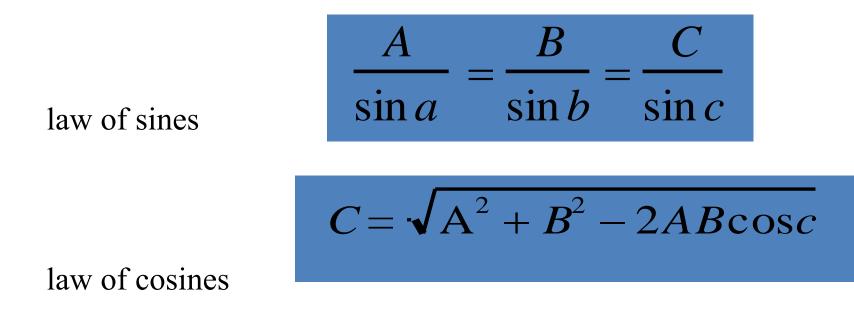




Force Subtraction

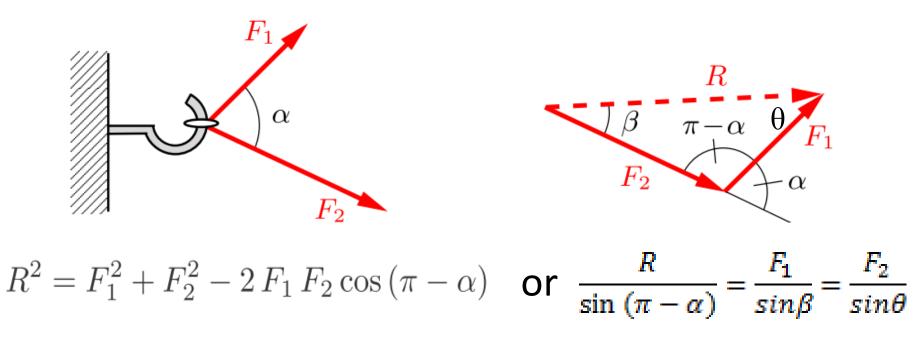




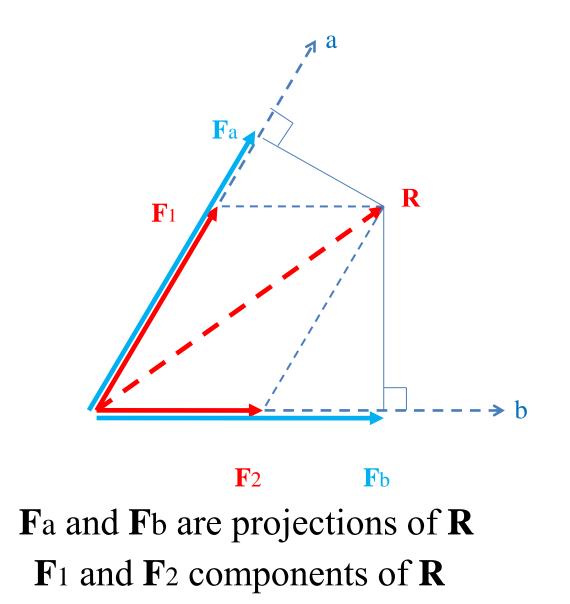


Example

 A hook carries two forces F₁ and F₂, which define the angle α. Determine the magnitude and direction of the resultant.

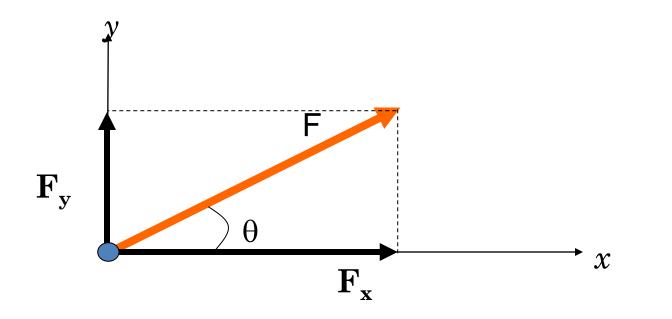


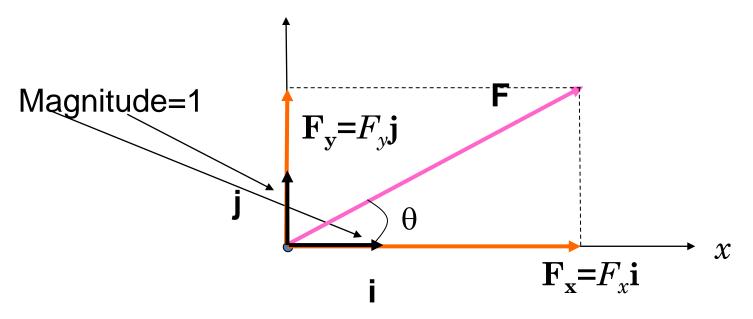
Projection and Component



Rectangular Components

 The most common two-dimensional resolution of a force vector is into rectangular components.



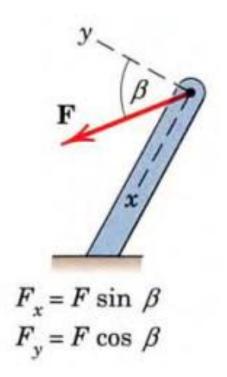


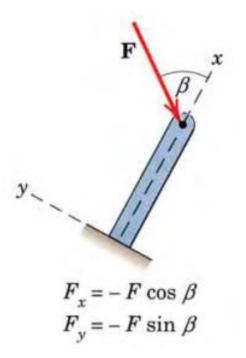
- $\mathbf{F} = \mathbf{F}x + \mathbf{F}y$ where $\mathbf{F}x$ and $\mathbf{F}y$ are vector components of \mathbf{F} .
- **F** = *Fx***i** + *Fy***j** where *Fx* and *Fy* are the *x* and *y* scalar components of the vector **F. i** and **j** are the **unit vectors** along the x and y axes,

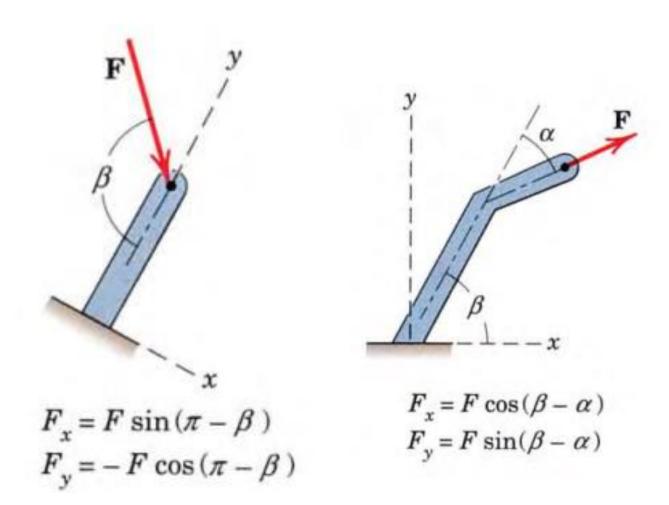
$$F_{x} = F \cos \theta \qquad F_{y} = F \sin \theta$$
$$F_{y} = \sqrt{F_{x}^{2} + F_{y}^{2}} \qquad \tan \theta = \frac{F_{y}}{F_{x}}$$

21

Rectangular Components of Forces







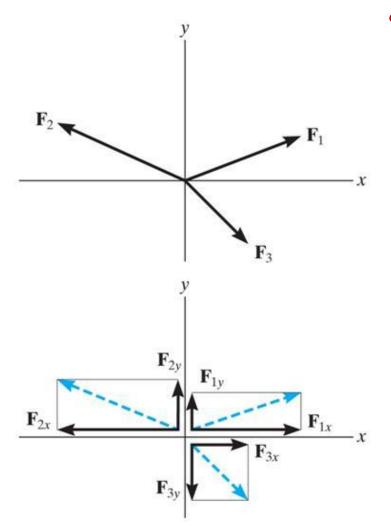
When **three or more coplanar forces** act on a particle, the rectangular components of their resultant **R** can be obtained by adding algebraically the corresponding components of the given forces.

$$\mathbf{R}_{\mathbf{x}} = \Sigma \ \mathbf{R}_{\mathbf{x}} \qquad \qquad \mathbf{R}_{\mathbf{y}} = \Sigma \ \mathbf{R}_{\mathbf{y}}$$

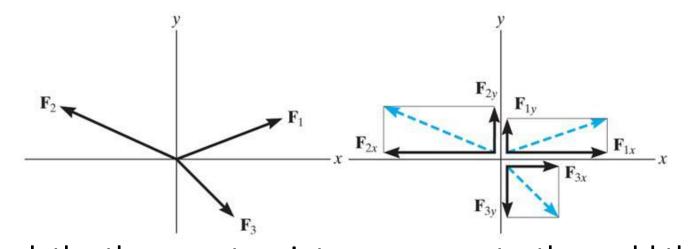
The magnitude and direction of **R** can be determined from

$$\tan \theta = \frac{R_y}{R_x} \qquad \qquad R = \sqrt{R_x^2 + R_y^2}$$

Addition of Several Vectors



- <u>Step 1</u> is to *resolve* each force into its *components*.
 - <u>Step 2</u> is to *add* all the *xcomponents* together,
 followed by adding all the *y*- *components* together.
 These two totals are the x
 and y components of the
 resultant vector.
 - <u>Step 3</u> is to *find* the *magnitude* and *angle* of the *resultant vector*.



Break the three vectors into components, then add them. \bullet $\mathbf{F}_{R} = \mathbf{F}_{1} + \mathbf{F}_{2} + \mathbf{F}_{3}$ $=F_{1x}\mathbf{i}+F_{1y}\mathbf{j}-F_{2x}\mathbf{i}+F_{2y}\mathbf{j}+F_{3x}\mathbf{i}-F_{3y}\mathbf{j}$ $= (F_{1x} - F_{2x} + F_{3x}) \mathbf{i} + (F_{1y} + F_{2y} - F_{3y}) \mathbf{j}$ $= (F_{Rx})\,\boldsymbol{i} + (F_{Ry})\,\boldsymbol{j}$ \mathbf{F}_{Ry} \mathbf{F}_R $\theta = \tan^{-1} \left[\frac{F_{Ry}}{F_{Ry}} \right] \qquad F_R = \sqrt{F_{Ry}^2 + F_{Ry}^2}$

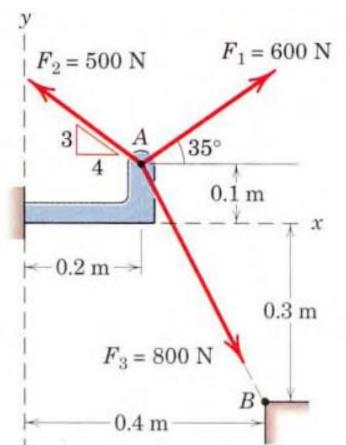
x

 \mathbf{F}_{Rx}

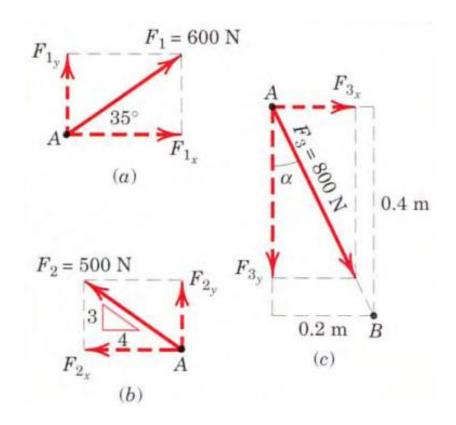
Examples FORCES SYSTEMS

Example 1

- The forces F₁, F₂, and F₃ all of which act on point A of the bracket, are specified in three different ways.
 Determine the x and y scalar components of each of the forces.
 - **F**_{1x}=491 N **F**_{1y}=344 N
 - **F**_{2x}=-400 N **F**_{2y}=300 N
 - **F**_{3x}=358 N **F**_{3y}=-716 N



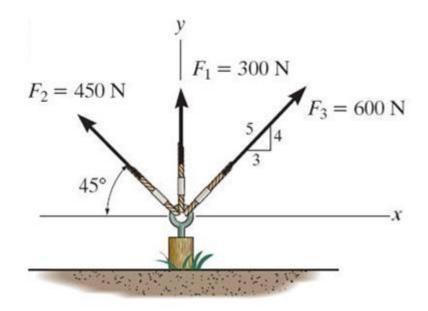
SOL. 1



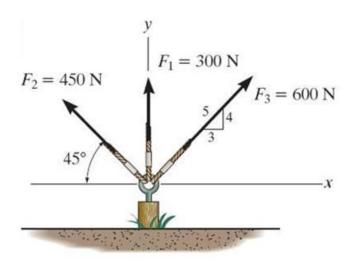
- **F**_{1x}=491 N **F**_{1y}=344 N
- **F**_{2x}=-400 N **F**_{2y}=300 N
- **F**_{3x}=358 N **F**_{3y}=-716 N

Example 2

Determine the Resultant Forces and angle of this forces.



SOL. 2



 $F_{1} = \{0 \ i + 300 \ j\} N$ $F_{2} = \{-450 \cos (45^{\circ}) \ i + 450 \sin (45^{\circ}) \ j\} N$ $= \{-318.2 \ i + 318.2 \ j\} N$ $F_{3} = \{(3/5) \ 600 \ i + (4/5) \ 600 \ j\} N$ $= \{360 \ i + 480 \ j\} N$

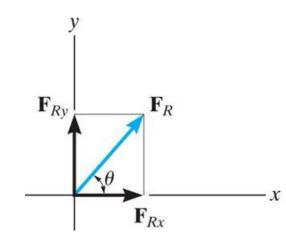
Summing up all the *i* and *j* components respectively, we get:

$$\mathbf{F}_{R} = \{ (0 - 318.2 + 360) \, \mathbf{i} + (300 + 318.2 + 480) \, \mathbf{j} \}$$

$$\mathbf{N} = \{ 41.80 \, \mathbf{i} + 1098 \, \mathbf{j} \} \, \mathbf{N}$$

$$F_{R} = ((41.80)^{2} + (1098)^{2})^{1/2} = \underline{1099} \, \mathbf{N}$$

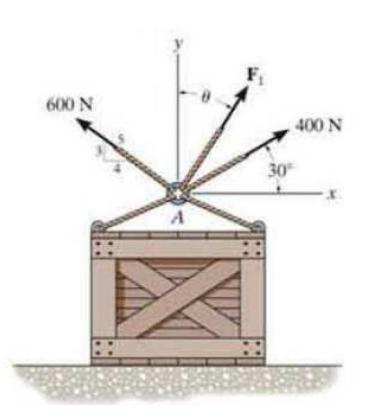
$$\phi = \tan^{-1}(1098/41.80) = \underline{87.8^{\circ}}$$



Example 3

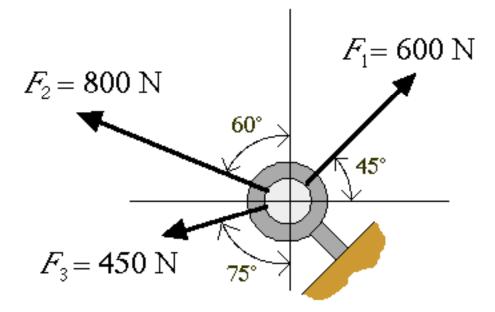
To have resultant Force in y direction with a magnitude of 800 N. Find the magnitude of F_1 and value of angle θ .

• Answer: $F_1 = 275, \theta = 29, 1^{\circ}$

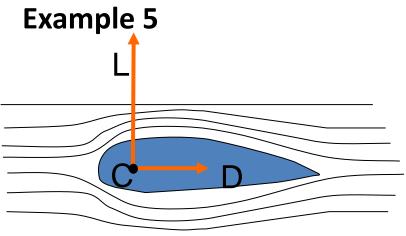


Example 4

A ring supports three forces. What is the resultant force applied to the ring?



A:
$$\mathbf{R} = 998 \text{ N}$$
 @ 134.9°



Air flow

The ratio of the lift force **L** to the drag force **D** for the simple airfoil is L/D = 10. If the lift force on a short section of the airfoil is 50 N, compute the magnitude of the resultant force **R** and the angle θ which it makes with the horizontal.

