

ME 444 MATLAB® FOR ENGINEERS

Lecturer:

Dr. Nurettin Furkan DOĞAN

4 th Floor Office No: 303

nfdogan@gantep.edu.tr

0342 317 1200- 2569

Tuesday: 13.30- 15:00

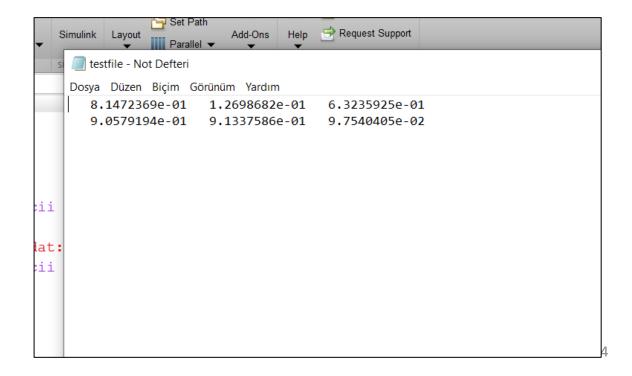
Friday : 10.00-11.30

CHAPTER 5

PROGRAMMING IN MATLAB-2
(File management, User-defined Functions)

File Management: Load and Save

- In most cases, the input to a script comes from a data file created by another source.
- It's useful to store the output in an external file that can be processed and/or printed later.
- There are processes on the files:
- ☐ Read: Reading data from a previously created file
- ☐ Write: Write (save) data to a file
- ☐ Add: Adding data to an existing file


File Management: Writing (Saving) Data to a File

• The save command can be used to write or append data from a matrix to a data file.

Format of this command:

save filename matrixvariablename -ascii

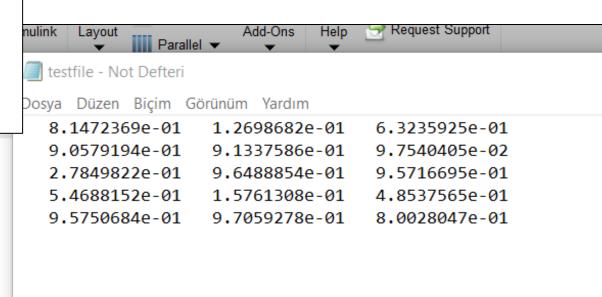
File Management: Writing (Saving) Data to a File

To append the contents of a matrix variable to an existing file:

>> save testfile.dat mat2 -ascii -append

ii

```
>> mat2 = rand(3,3)


mymat =

0.9218  0.4057  0.4103

0.7382  0.9355  0.8936

0.1763  0.9169  0.0579

>> save testfile.dat mat2 -ascii -append
```

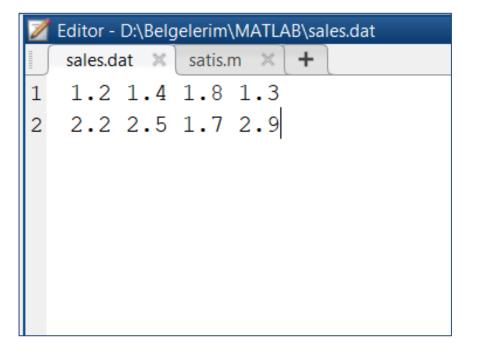

File Management: Reading Data from a File

The load command is used to assign the previously saved data to a variable in MATLAB.

>> load testfile.dat

```
Command Window
  >> load testfile.dat
  >> who
  Your variables are:
  testfile
  >> testfile
  testfile =
      0.8147
               0.1270
                         0.6324
      0.9058
             0.9134
                       0.0975
      0.2785
            0.9649
                      0.9572
      0.5469 0.1576
                       0.4854
      0.9575
               0.9706
                         0.8003
```

• who: lists the variable names in the current file.


• **Problem:** The sales (in billions of TL) of Company X for each of the four quarters of 2019 are stored in a file named .. salesfigs.dat ..:

- ✓ First, create this file (just type numbers in Editor and Save As.. sales.dat)
- ✓ Next, load the data from the file into a matrix and split that matrix into 2 vectors.

EXAMPLE SOLUTION:

✓ First, create this file (just type numbers in Editor and Save As.. sales.dat)

EXAMPLE SOLUTION:

✓ Then, in the script file called sales.m, load the data from the sales.dat file into two separate vectors.

- EXAMPLE SOLUTION:
- ✓ Command Window image after running the program:

```
| Sirket 1'in 2019 satış rakamları= 1.2 1.4 1.8 1.3 | Sirket 2'nin 2019 satış rakamları= 2.2 2.5 1.7 2.9 | | fx >>>
```


- ✓ In MATLAB, data entry to the program can be done through an Excel data file.
- ✓ At the same time, data output from the program can also be done using an Excel file.
- ✓ Detailed information on file input/output operations can be found under the File I/O heading in the MATLAB program through the help window.

✓ In MATLAB, the xlsread command is used to input data from an Excel file to the program.

```
variable name=xlsread('filename')
```

- ✓ 'filename' is the name of the excel file to be entered. When using this command, the excel file to be entered must be in the same Work Folder as the program we wrote in MATLAB.
- ✓ If the excel file to be entered consists of more than one sheet, the data will be taken from the first sheet.

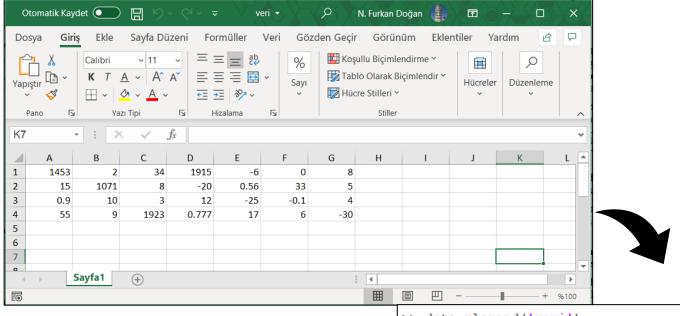
✓ If there is more than one sheet in the excel file used and the sheets are specially named, data entry can be made from the desired sheet by specifying the name of the desired sheet.

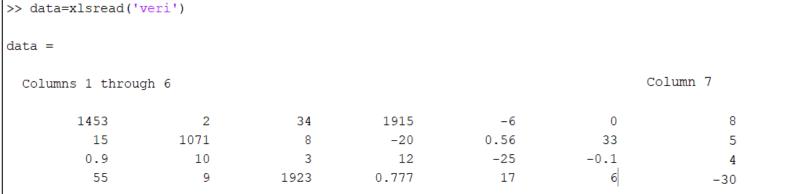
```
variable_name=xlsread('filename','sheetname')
```

✓ Another option is to enter data in the desired row/column range.

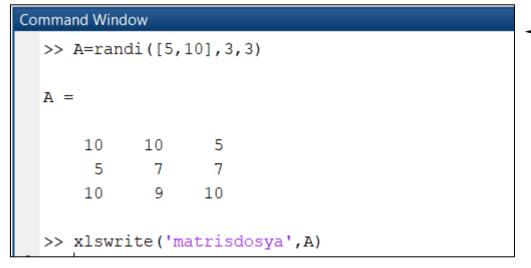
```
variable name=xlsread('filename','sheetname','row/column')
```

✓ When writing 'row/column' we need the addressing used to specify the data range in excel. For example; 'C2:E5' contains data from a 4x3 field in excel. That is, it consists of rows 2,3,4, and 5 and the data in columns C,D, and E.


✓ To write data to an excel file, the xlswrite command is used.


```
xlswrite('filename', variable name)
```

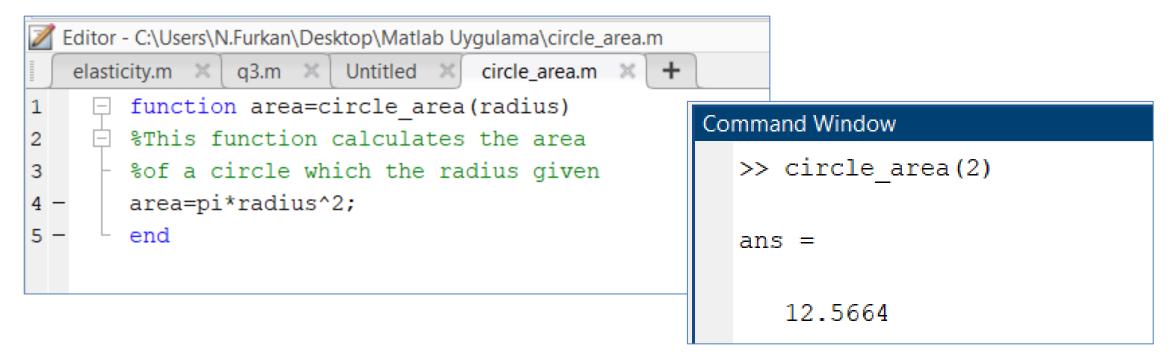
- ✓ 'filename' is the name of the excel file where the data sent from the program will be written. If there is no file with the specified name in the Work Folder, MATLAB will automatically create an excel file with the specified name.
- ✓ variable_name is the name of the variable where the data to be sent is defined.
- ✓ In addition, data can be written to a certain page and data range in the excel file in data writing, as in the data reading process.


✓ Example: Let's read data from the excel file named data in the picture to MATLAB.

✓ Example: Let's print a matrix A created in MATLAB to an excel file named 'matrixfile'.

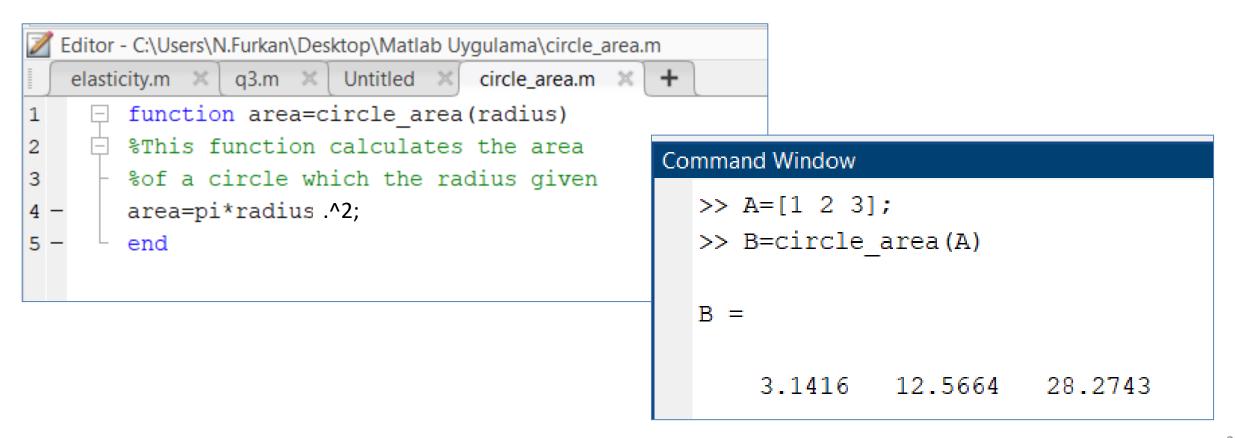
Otomatik Kaydet ◯ 🖫 🗸 ∨ 🔍 マ matrisdosya 🕶 🔎 N. Furkan Doğan										
Do	sya Gir	iş Ekle	Sayfa Di	izeni Fo	ormüller	Veri Gö	zden Geçir	Görünüm	n Ek	
Calibri ∨ 11 ∨ ≡ ≡ ≡ ₽										
Pano 🗓 Yazı Tipi 🕟				<u>P</u>	Hizalama	F₃		Stiller		
J2 · × / fx										
4	Α	В	С	D	E	F	G	Н	1	
1	10	10	5							
2	5	7	7							
3	10	9	10							
4										
5										
6										
7										

- ✓ There are several types; For now we will focus only on the type of function that calculates and returns a value.
- ✓ We give a name to the function we wrote to perform a certain action and save it as .m.
- ✓ To use the function later, just like using a built-in function embedded in MATLAB: the function name is written, the necessary data is sent to the function by writting in parantheses, and after the calculations are made in the function, the result of the operation returns to the place where the function was called.


✓ When defining the function, it should look like this:

```
function output_data=function_name(input_data)
%comments for the user
computation1;
computation2;
computation3;
output_data=data_value;
end
```


Example: Let's calculate the area of the circle and write a sending function.


- ✓ One input argument required: radius
- ✓ There is one output argument: area

• When the function is called from the command window, it performs the operation using the input argument and sent the output argument.

 To pass vector elements to the function: the .^ operator for exponentiation of the elements should be used instead of the ^ exponentiation operator in

NOTES ON FUNCTIONS

- You can send multiple input data to the function.
- The variables used inside the function are called "local variables". Local variables can be defined in the function as needed.
- Notice that normally the outputs of user-defined functions are not printed to the screen (it does not contain disp or fprintf!). It needs a MATLAB program (script code) for printing to the screen.

NOTES ON FUNCTIONS

- Therefore, written MATLAB functions can be called with script codes written in the Editor window.
- The combination of user-written functions with the command lines typed in the
 editor is called a **program**. From now on, what is meant by the word program is the
 set of command lines written and saved in the Editor.

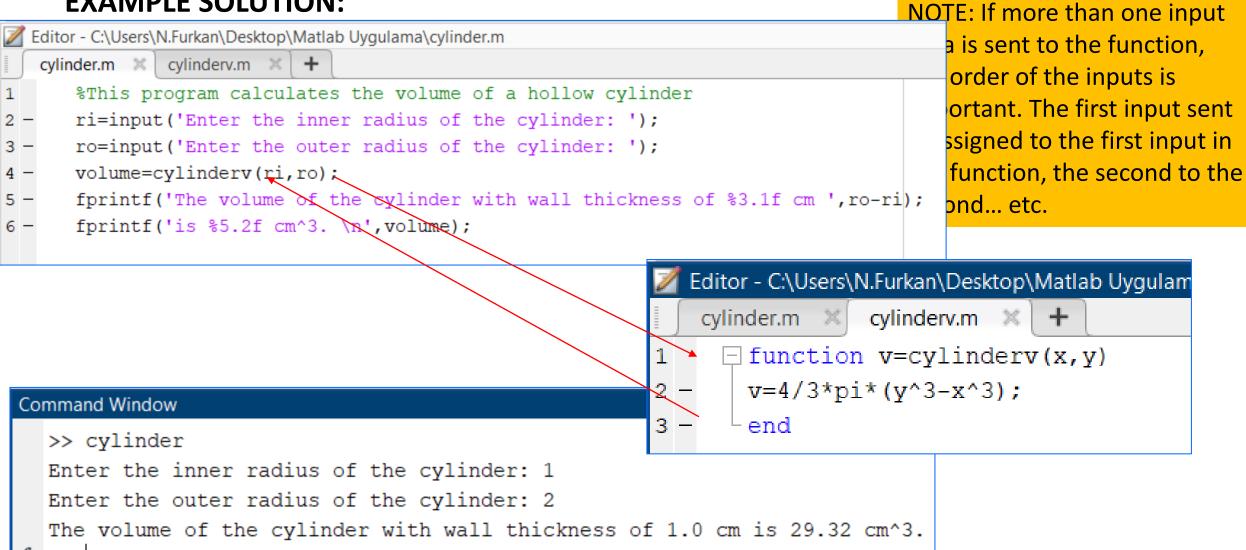
General Structure of a Simple Program

script.m

fonk_adi.m

- Read input values
- Call function (function_name) to calculate the result
- Print the result to the screen (or file).

function output= func_name(input)
output = calculated value acc.to input
end

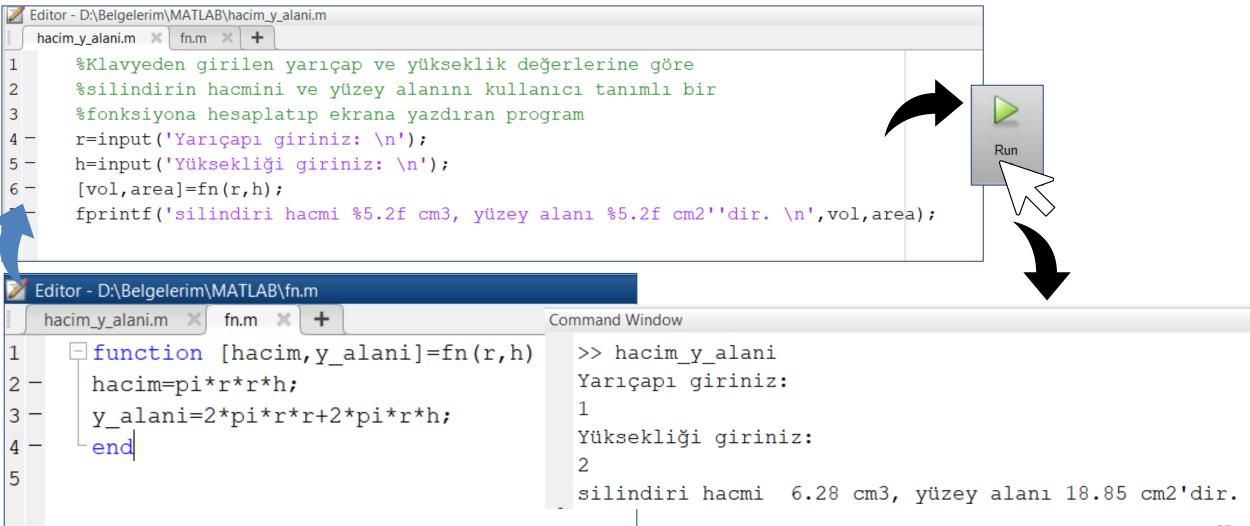


EXAMPLE:

The volume of a hollow sphere is found by $\frac{4}{3}\pi(r_o^3-r_i^3)$. We want to write a program that will ask the user for radii, call a function to calculate the volume, and print the result to the screen.

EXAMPLE SOLUTION:

EXAMPLE:


Write a MATLAB program that uses a function called cylinder to calculate the volume and surface area of a cylinder. Ask the user to enter the height and radius of the cylinder from the keyboard.

SOLUTION STEPS:

- 1. Prepare a script (cylinder.m) that asks the user for the base radius and height of the cylinder, then sends these values as input to the function we will write.
- 2. Write a function (func1.m) that will calculate the volume and surface area of the cylinder using the input values from the main program and send it as output to the main program.
- 3. Print the output values from the function in the main program separately.

EXAMPLE SOLUTION:

Next week

Chapter 6

DECISION MAKING