

Introduction to Python Language

Application 03- Loops

1. The Fibonacci sequence begins with the numbers 1, 1, 2, 3, 5, 8,... Each term after the first two is the sum of the two preceding terms. Write a Python program that asks the user to enter a positive integer n and then computes and displays the nth term of the Fibonacci sequence.

```
n = int(input(" Enter which Fibonacci number you want (n): " ) )
if n \le 0:
    print("Please enter a positive integer.")
elif n == 1:
    print("The 1st Fibonacci number is 1.")
elif n == 2:
    print("The 2nd Fibonacci number is 1.")
else:
    a, b = 1, 1
    for i in range (3, n + 1):
        c = a + b
        a, b = b, c
    print("The",n,"th Fibonacci number is ",c,".")
```

2. Write a Python program that determines how long it takes for an investment to **double** in value at a specified **annual interest rate**.

Your program should:

- •Prompt the user to enter the annual interest rate (as a percentage).
- •Assume an initial investment amount of \$1 (since the actual amount doesn't affect the doubling time).
- •Use a while loop to calculate how many years it takes for the investment to double.
- •Display the total number of years required.

Example:

If the user enters an annual interest rate of 5, the program should display:

```
It will take 15 years for the investment to double at an annual rate of 5%.
rate = float(input("Enter the annual interest rate (in %): "))
initial = float(input("Enter the initial invesment: "))
balance = initial
years = 0
rate = rate / 100 # convert percentage to decimal
while balance < 2 * initial:</pre>
    balance = balance + balance * rate
    years = years + 1
print("It will take", years, "years for the investment to double.")
```

```
rate = float(input("Enter the annual interest rate (in %): "))
initial = float(input("Enter the initial invesment: "))
balance = initial
years = 0

rate = rate / 100  # convert percentage to decimal

while balance < 2 * initial:
    balance = balance + balance * rate
    years = years + 1

print("It will take", years, "years for the investment to double.")</pre>
```

3. A positive whole number n (greater than 2) is called **prime** if it is not evenly divisible by any number between 2 and $\sqrt{\mathbf{n}}$ (square root of n).

Write a Python program that:

- •Asks the user to enter a number n.
- •Checks whether the number is **prime**.
- •If the number is **not prime**, the program should stop as soon as it finds a divisor.
- •Then it should print an appropriate message.

```
import math
n = int(input("Enter a number greater than 2: "))
is_prime = True  # assume it is prime

# check divisibility from 2 to sqrt(n)
for i in range(2, int(math.sqrt(n)) + 1):
    if n % i == 0:
        print(n, "is not a prime number. It is divisible by", i)
        is_prime = False
        break  # stop as soon as a divisor is found

if is_prime:
    print(n, "is a prime number.")
```