ME 110

Computation for
Mechanical |

Engineering e

using namespace st

int main() { S
double I=1.2e~-%, E=EauGH : X
for (int i=0; i<=ZU; 1+=1)(
%=0.1*%i;
y=(W*z)/(24.*E*I)* (pow(]
2.*L*pow(%,2.)+pow(x,:

Vectors

I Basics

Content

This week we will study Vectors:

= Concept
= Declaration, Initialization, Assignment
= Dynamic Processing of Vectors

Concept of Vectors

Recall that for arrays:

= the size of an array cannot be defined at run-time
= the size of an array cannot be changed at run-time

Such objects are called static, they can only be defined at compile-time.
C++ provides the vector data class that enables the programmer to create
dynamic arrays:

= the size of a vector can be defined at run-time

= the size of a vector may change at run-time

The vector data class provides many powerful methods for processing
dynamic memory management.

Vector Declaration and Initialisation

First, to use the vector class the following header must be included:
#include <vector>

The general form of the declaration of a vector array is:

vector<type> name (numberOfElements) ;

N_ .
Examples op tlonalv
vector<double> mass(6) ; vector<int> scores;
The elements are: This is an empty vector!
mass[0] The numberOfElements
mass[1] IS zero and so there are no
mass[2] elements.
mass [3] Note that the indexing of the
mass|[4] .
elements of vectors is the
mass|[5]
same as that of arrays.

Vector Initialisation
The general form of vector declaration:
vector<type> name (numberOfElements) ;

initialises all elements of the vector to zero.

Alternatively an initialiser can be given at declaration:
vector<type> name (numberOfElements, wvalue);

initialises all elements of the vector to value.

Examples

vector<double> mass(6) ;

all elements of mass are initialised to 0.

vector<double> mass(6,1.8);

all elements of mass are initialisedto 1.8

Vector Assignment

Consider the vector declaration:

vector<double> a(5);

At this time, the elements are all automatically initialised to zero.

a 0.0 0.0 0.0 0.0 0.0
0 1 2 3 4
Elements of a vector array can be assigned (at any time) as follows:
al[0] = 8.4; The green values are the array indices.
al[l] = 3.6;
al[2] = 9.1; Note that vector assignment is performed
al[4] = 3.9; in the same way as array assignment.

The values of (some of) the elements are now re-defined:

a 8.4

3.6

9.1

0.0

3.9

0

1

2

3

4

Note that the value of element a[3] is still 0.0

Assignment can be performed directly from input:

This program declares an array, assigns the

elements with values input from the keyboard,

#include <vector> and then outputs the values in reverse order.

You could also use normal arrays:

int main
1 in () { replace vector<double> a(5);

vector<double> a(5) ; with double a[5];

cout << "Input 5 real numbers:" << endl;
for(int i=0; i<5; i++) cin >> a[i];

cout << "In reverse order: " << endl;

for (int i=4; i>=0; i1--) cout << a[i] <« " ";
Output

cout << endl;

Input 5 real numbers:
return 0; 1.2 3.5 -0.4 10.2 7.1

} In reverse order:

7.1 10.2 -0.4 3.5 1.2

Dynamic Processing of Vectors

So far, vectors look very much like static arrays.

However, vectors can also be defined and processed dynamically;
a vector is therefore a type of dynamic array.

There are many powerful methods available for dynamic processing of
vectors; we will look at just five of them:

name.size () ; returns the size of vector name

name.push back (x) ; adds an element with value x

to the end of the vector
(increasing the vector size by one).

name.pop_back () ; removes an element from the end of
the vector (decreasing the size by one).

name.clear () ; removes all elements from the vector
(leaving a vector of size zero)

name.resize (S) ; resizes the vector to size s

Using the .size() method

The .size () method provides a simple and consistent way to

loop over all elements in a vector without the need to keep track
of the vector’s size:

vector<double> mass (5) ;

for (unsigned int i=0; i<mass.size(); i++) {
mass[i] = i*i;

}

Note that the .size () method returns an unsigned int
and so the counter i is also defined as type unsigned int.

In time, you will discover more uses for this method...

Using the .push back() and .pop back() methods

A vector can be considered as a stack of values.

remove a value
from the stack

The top of the add a value 'p°p\ba
stack is the end to the stack k()
of the vector e~~~ T T T T T

Oll Il N W] O
Oll I D] W]] O
Oll || N WY & O

Using the .push back () method

The size is 3

#include <vector> The content is: 8.3 8.3 8.3

The size is 4

The content is: 8.3 8.3 8.3 5.9

vector<double> x (3, 8.3);

cout << "The size is " << x.size() << endl;
cout << '"The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

14

x.push back(5.9);

cout << "The size is " << x.size() << endl;
cout << "The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

14

Using the .pop back () method

The size is 3

#include <vector> The content is: 8.3 8.3 8.3
The size is 2

The content is: 8.3 8.3

vector<double> x (3, 8.3);

cout << "The size is " << x.size() << endl;
cout << '"The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

14

x.pop_back() ;

cout << "The size is " << x.size() << endl;
cout << "The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

14

Using the .clear () method

The size is 3

#include <vector> The content is: 8.3 8.3 8.3

The size is 0

The content is: <«—— empty vector

vector<double> x (3, 8.3);

cout << "The size is " << x.size() << endl;
cout << '"The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

x.clear () ;

cout << "The size is " << x.size() << endl;
cout << "The content is: ";
for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

Using the .resize () method

The size is 3

#include <vector> The content is: 8.3 8.3 8.3

The size is 5

The content is: 8.3 8.3 8.3 0.0 0.0

vector<double> x (3, 8.3);

cout << "The size is " << x.size() << endl;
cout << '"The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

x.resize (5) ;

cout << "The size is " << x.size() << endl;
cout << "The content is: ";

for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

14

14

This program builds a vector from values input from the keyboard.
The size of the vector (initially zero) increases until a zero is input.

#include <vector>

int main() {
vector<int> iv;

int n;

while (true) {
cout << "Input: ";
cin >> n;
if (n==0) break;
iv.push back(n) ;

}

cout << "iv is:" << endl;

56

23

89

65

34

for (unsigned int i=0; i<iv.size(); i++)
cout <K "iv[" <K 1 <K<K "] = " LK iv[i] << endl;

Output
Input: 34
Input: 65
Input: 89
Input: 23
Input: 56
Input: O
iv is:
iv[0] = 34
iv[1l] = 65
iv[2] = 89
iv[3] = 23
iv[4] = 56

	Slayt 1:
	Slayt 2: Content
	Slayt 3: Concept of Vectors
	Slayt 4: Vector Declaration and Initialisation
	Slayt 5: Vector Initialisation
	Slayt 6: Vector Assignment
	Slayt 7
	Slayt 8
	Slayt 9: Using the .size() method
	Slayt 10: Using the .push_back() and .pop_back() methods
	Slayt 11: Using the .push_back() method
	Slayt 12: Using the .pop_back() method
	Slayt 13: Using the .clear() method
	Slayt 14: Using the .resize() method
	Slayt 15

