
ME 110
Computation for

Mechanical
Engineering

Vectors

Basics

Content

This week we will study Vectors:

▪ Concept

▪ Declaration, Initialization, Assignment

▪ Dynamic Processing of Vectors

Concept of Vectors

Recall that for arrays:

▪ the size of an array cannot be defined at run-time

▪ the size of an array cannot be changed at run-time

Such objects are called static, they can only be defined at compile-time.

C++ provides the vector data class that enables the programmer to create

dynamic arrays:

▪ the size of a vector can be defined at run-time

▪ the size of a vector may change at run-time

The vector data class provides many powerful methods for processing

dynamic memory management.

Vector Declaration and Initialisation

First, to use the vector class the following header must be included:

#include <vector>

The general form of the declaration of a vector array is:

 vector<type> name(numberOfElements);

Examples

 Note that the indexing of the

 elements of vectors is the

 same as that of arrays.

vector<double> mass(6);

The elements are:

mass[0]

mass[1]

mass[2]

mass[3]

mass[4]

mass[5]

vector<int> scores;

 This is an empty vector!
 The numberOfElements

 is zero and so there are no

 elements.

optional

Vector Initialisation

The general form of vector declaration:

 vector<type> name(numberOfElements);

initialises all elements of the vector to zero.

Alternatively an initialiser can be given at declaration:

 vector<type> name(numberOfElements, value);

initialises all elements of the vector to value.

Examples
vector<double> mass(6);

 all elements of mass are initialised to 0.

vector<double> mass(6,1.8);

 all elements of mass are initialised to 1.8

Vector Assignment

Consider the vector declaration:

 vector<double> a(5);

At this time, the elements are all automatically initialised to zero.

Elements of a vector array can be assigned (at any time) as follows:

 The green values are the array indices.

 Note that vector assignment is performed

 in the same way as array assignment.

The values of (some of) the elements are now re-defined:

 Note that the value of element a[3] is still 0.0

8.4 3.6 9.1 0.0 3.9

0 1 2 3 4

0.0 0.0 0.0 0.0 0.0

0 1 2 3 4

a

a

a[0] = 8.4;

a[1] = 3.6;

a[2] = 9.1;

a[4] = 3.9;

#include <iostream>

#include <vector>

using namespace std;

int main () {

 vector<double> a(5);

cout << "Input 5 real numbers:" << endl;

 for(int i=0; i<5; i++) cin >> a[i];

cout << "In reverse order: " << endl;

for(int i=4; i>=0; i--) cout << a[i] << " ";

 cout << endl;

 return 0;

}

Input 5 real numbers:

1.2 3.5 -0.4 10.2 7.1

In reverse order:

7.1 10.2 -0.4 3.5 1.2

Output

Assignment can be performed directly from input:

You could also use normal arrays:

 replace vector<double> a(5);

 with double a[5];

This program declares an array, assigns the

elements with values input from the keyboard,

and then outputs the values in reverse order.

Dynamic Processing of Vectors

So far, vectors look very much like static arrays.

However, vectors can also be defined and processed dynamically;

a vector is therefore a type of dynamic array.

There are many powerful methods available for dynamic processing of

vectors; we will look at just five of them:

 name.size(); returns the size of vector name

 name.push_back(x); adds an element with value x

 to the end of the vector

 (increasing the vector size by one).

 name.pop_back(); removes an element from the end of

 the vector (decreasing the size by one).

 name.clear(); removes all elements from the vector

 (leaving a vector of size zero)

 name.resize(s); resizes the vector to size s

Using the .size() method

vector<double> mass(5);

 for (unsigned int i=0; i<mass.size(); i++) {

 mass[i] = i*i;

 }

Note that the .size() method returns an unsigned int

and so the counter i is also defined as type unsigned int.

In time, you will discover more uses for this method...

The .size() method provides a simple and consistent way to

loop over all elements in a vector without the need to keep track

of the vector’s size:

Using the .push_back() and .pop_back() methods

A vector can be considered as a stack of values.

add a value

to the stack

remove a value

from the stack

5

4

3

2

1

0

5

4

3

2

1

0

5

4

3

2

1

0

6

The top of the

stack is the end

of the vector

Using the .push_back() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

 vector<double> x(3, 8.3);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

 x.push_back(5.9);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 4

The content is: 8.3 8.3 8.3 5.9

Using the .pop_back() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

 vector<double> x(3, 8.3);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

 x.pop_back();

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 2

The content is: 8.3 8.3

Using the .clear() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

 vector<double> x(3, 8.3);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

 x.clear();

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 0

The content is: empty vector

Using the .resize() method

#include <iostream>

#include <vector>

using namespace std;

int main () {

 vector<double> x(3, 8.3);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

 x.resize(5);

 cout << "The size is " << x.size() << endl;

 cout << "The content is: ";

 for (unsigned int i=0; i<x.size(); i++) cout << x[i] << " ";

 cout << endl;

}

The size is 3

The content is: 8.3 8.3 8.3

The size is 5

The content is: 8.3 8.3 8.3 0.0 0.0

#include <iostream>

#include <vector>

using namespace std;

int main() {

 vector<int> iv;

 int n;

 while(true) {

 cout << "Input: ";

 cin >> n;

 if (n==0) break;

 iv.push_back(n);

 }

 cout << "iv is:" << endl;

 for(unsigned int i=0; i<iv.size(); i++)

 cout << "iv[" << i << "] = " << iv[i] << endl;

}

Input: 34

Input: 65

Input: 89

Input: 23

Input: 56

Input: 0

iv is:

iv[0] = 34

iv[1] = 65

iv[2] = 89

iv[3] = 23

iv[4] = 56

Output

This program builds a vector from values input from the keyboard.

The size of the vector (initially zero) increases until a zero is input.

34

65

89

23

56

	Slayt 1:
	Slayt 2: Content
	Slayt 3: Concept of Vectors
	Slayt 4: Vector Declaration and Initialisation
	Slayt 5: Vector Initialisation
	Slayt 6: Vector Assignment
	Slayt 7
	Slayt 8
	Slayt 9: Using the .size() method
	Slayt 10: Using the .push_back() and .pop_back() methods
	Slayt 11: Using the .push_back() method
	Slayt 12: Using the .pop_back() method
	Slayt 13: Using the .clear() method
	Slayt 14: Using the .resize() method
	Slayt 15

