<EP UNI&

\> 1S
¥
AN
< -
(L] ’ -
»* X

1973

ME 444
MATLAB® FOR ENGINEERS

Lecturer:

Dr. Nurettin Furkan DOGAN
Mechanical Engineering Department
4 th Floor Office No: 303

>4 nfdogan@gantep.edu.tr
Q 0342 317 1200- 2569
Office Hours:

Tuesday: 13.30- 15:00
Friday :10.00-11.30

CHAPTER 2

MAKING ALGORITHM AND FLOW CHART

Algorithm Concept, Classification, Development

eP UN/I,

Algorithm Concept .' ’

/
<
?A

GA?
L

1973

* The algorithm was put forward in the work of the mathematician Al-
Harizmi, who lived in the 800s.
 As can be understood from its history, the algorithm was used to

solve problems in the field of mathematics before it entered the

computer world.

* Later, with the development of computers, it began to be used in 2 é&anb)(opeamu

solving problems in this field.

<EP U,
& Q

»
» L
I E
o

NG
\)4

1973

Algorithm Concept

A * |In simplest terms, an algorithm is a solution path consisting of a finite number of steps to be followed
to solve a problem. In other words, an algorithm is a verbal expression of how to perform the logical
solution of a problem step by step.

* Since the solutions created by the algorithm are expressed verbally, flow diagrams are used to make it
more standard that everyone can draw the same result when they see it. Flow charts consist of
symbols. Each symbol has a specific function.

A computerized version of a problem whose algorithm has been created is called a program.

 The program is the code equivalent of the whole process that needs to be done to solve the problem.

* Programming languages are used to turn algorithms into programs.

* Software is developed using programming languages.

Algorithm Concept .e)

* The main features of the algorithm are:
v Input/Output information,
A v’ Finiteness,
v’ Precision,
v’ Efficiency,

v Achievement and performance.

< EP UN“’
.V-\A £

/.

)
-
e

A
\VJ

1973

GA?

Algorithm Concept

* Input/Output information

e Algorithms must have input and output information.
* The data coming from outside is called input information.

* This data is processed in the algorithm and creates the output information.%

Output information is necessarily present in every algorithm. I@"i

* The main purpose of the algorithms is to generate output information by
processing the input information.

* However, the output information of an algorithm cannot fully meet the
requirements in all cases. In such cases, the output information produced by
the first algorithm is sent to another algorithm as input information, so that

the user has the desired information.

_REPUN/
’.’/‘\'\ " ._II,G .
~
<

: AN
Algorithm Concept ° T2
* Finiteness:

* For all possibilities, the algorithm must finish in finite steps,

* The algorithm should not go into an infinite loop.

Merhaba
Merhaba
Merhaba
Merhaba
Merhaba
Merhaba

Merhaba
Merhaba
Merhaba
Merhaba

Algorithm Concept

Precision:

Each command should be simple enough that one can
execute it with pen and paper.

Each step of the algorithm should be clearly, simply and
precisely stated.

It should not require comments and should not have

ambiguous statements.

Algorithm Concept

Efficiency:

 Written algorithms should be created effectively and thus away from
unnecessary repetitions. This is one of the main features of the algorithm.

* In addition, algorithms should be written for general purposes and should be
composed of a structural main algorithm and sub-algorithms. Thus, an algorithm
written before can be used for other operations later on.

* To give an example, if we have an algorithm that we use to find the average of
the given n numbers, this algorithm should also be able to be used for an

algorithm that finds the average age of students in a class.

Algorithm Concept

 Achievement and performance:

* The goal should be to write high-performance programs, taking into account
performance criteria such as hardware requirement (such as memory usage),
uptime. Unnecessary repetitions should be eliminated. The following criteria are
considered in the performance evaluation of an algorithm.

* Unit processing time

e Data search and fetch time

* Comparison time

 Transfer time.

10

Algorithm- Example

<EP U,
& Q

AN
\ /4

1973

The solutions to be created with the algorithm are expressed verbally. For example, if a breakfast

preparation algorithm is created when breakfast will be made when we wake up in the morning:

DN N N N U N N U N

Get out of bed

Go to the kitchen

Take bread

Prepare the tea

Take breakfast out of the fridge

Fill your cup of tea

Get up from the table when you're full
Put the breakfasts in the fridge

Clean the table

Classification of the Algorithm

* Algorithms are examined in 3 groups according to their complexity.

Basic (Linear)

Conditional

Algorithms

Loop

12

Basic (Linear) Algorithms : vV

1973

* They are algorithms that do not contain logical expressions and do not have program flow

branches.
* |nthese algorithms, the flow will be straight from start to finish.
* They are mostly used to perform small calculations. According to the previous algorithm
example, it is seen that there is no decision structure.
Example:
1. Enter the mileage to be calculated; km
2. Multiply the entered value by 1000; m=km*1000

3. Write the calculated value on the screen; m

<EP U,
o bé‘.,;
%)

-

Basic (Linear) Algorithms .e)

1973

Example: Algorithm that calculates the sum, product and average of three externally entered
numbers
1. Enter three numbers; ABC
Calculate the sum of the numbers; total=A+B+C
Calculate the product of the numbers; product=A*B*C

2

3

4. Calculate the average of the numbers; avg=total/3
5

Print the sum, product and average of the numbers on the screen; sum, product, avg

Conditional (Logical) Algorithms

They are structures that contain logical comparisons within the algorithm.
According to logical comparisons, the flow of the algorithm will move to
different steps.

Algorithms created in this way are called Conditional Algorithms.

If the first created algorithm example is a little more detailed, it is seen that

decision structures emerge.

eP UN’I/

&
A\
)
" <

* 1973 ¥

N
A
I
©

Conditional (Logical) Algorithms

Get out of bed

Go to the kitchen

IF there is no bread, buy bread
Prepare the tea

Take breakfast out of the fridge

Fill your cup of tea

Get up from the table when you're full

IF there are no breakfasts in plate put in the dishwasher

S R -

IF there are breakfasts in plate put in the fridge

10. Clean up the table.

Conditional (Logical) Algorithms : U

)4

1973

Example: Let's write an algorithm that finds the largest number among the three numbers entered.
1. Enter three numbers; AB C

Let A be the largest number; largest=A

IF B is greater than the largest (B>largest), let B be the largest; largest=B

IF Cis greater than (C>largest), let C be the largest; largest=C

e

Print the largest number to the screen; largest

eP Uny
.V-\g‘ bé:p
A\
7
" <
S

1973

Conditional (Logical) Algorithms

A
T
o
*

Example: Let's write an algorithm that finds whether the number is positive, negative, or zero.
1. Enter the number; a

2. |IF the number a is greater than zero, write 'positive' on the screen and go to step 5;

3. IF the number ais less than zero, write 'negative' on the screen and go to step 5;

4. |IF the number a is equal to zero, write 'zero' on the screen and go to step 5;
5

The program is finished.

'\EP U’Vl[,

Loop Algorithms -e)
In the algorithm developed for the program, if a process repeats more than once,

the loop algorithm structure is used.

The logical comparison structure is specially used in loop algorithms.

If, as a result of the logical comparison process used in the algorithm, the flow of

the program goes to the previous step, not to a further step from the comparison
place, the algorithms created in this way are called loop algorithms.

In other words, as a result of logical comparison in loop algorithms, the program

goes to the previous steps.

Loop Algorithms

'

Loop Initialization

Loop Condition

Loop Body

i

Loop Update

]

for loop visualization

False

!

Loop Initialization

Laop Condition

Loop Body

while loop visualization

False

64z,

<EP UN/,
&

A\
\ /4

1973

20

eP Uny
.V-\g‘ bé:p
A\
)
" <
S

1973

Loop Algorithms

A
T
o
*

Example: Let's write an algorithm that finds the factorial of a number.
Enter the factorial number to be calculated; n
Initialize the factorial to 1; f=1

Set the index value to 1; i=1

Increase the index value by 1; i=i+1

1
2
3
4. Multiply the factorial value by the index and write the calculated value into the factorial; f = f x i
5
6. IF the index value is less than or equal to the number entered, go to Step 4;

7

Write the factorial value to the screen; f

P Uny,
.\V-

A
L4

1973

Loop Algorithms

A
<
o
*

Example: Let's write an algorithm that finds the greatest common divisor of the two numbers entered
Initialize the factorial to 1; f=1
Set the index value to 1; i=1
Multiply the factorial value by the index and write the calculated value into the factorial; f = x i

1

2

3

4. Increase the index value by 1; i=i+1

5. IF the index value is less than or equal to the number entered, go to Step 4;
6

Write the factorial value to the screen; f

SEP Uy,
.\V-
Y L
-

Making Algorithms ‘)‘

* The algorithm developed to solve a problem can be written in three ways:
* Line algorithm: The solution steps of the problem are written in plain text in
clear sentences.
* Flowchart: The solution steps of the problem are shown with geometric figures.

* Pseudo-code: The solution steps of the problem are expressed with clear

command-like texts or abbreviations.

23

<EP U,
& Q

Making Algorithms 2 _e)

1973

 Example: Let's show the algorithm of the program that adds two numbers entered

from the keyboard and displays it on the screen with 3 different methods.

With the flowchart:
With the line algorithm:
1. Start) [Start]
2. Read the first number (A) from i [FEEUEaeeeiE: v
1. Start
the keyboard
2. Read A AB
3. Read the second number (B)
3. ReadB
from the keyboard v
: 4. C=A+B
4. Create the result by adding the : _
5. WriteC C=A+B
entered numbers (C=A+B) 6. Sto
5. Print the result (C) to the screen ' P
6. Stop C
Stop

<EP U,
& Q

-
-

Making Algorithms g .e)

1973

 While developing algorithms, some elements such as variable, constant, assignment, loop, decision
structure, subroutine are used.

* Data: All information processed by computers is called data. Data are basically divided into two
as numeric and alphanumeric.

* |dentifier: These are the names given by the software developer to the programming units such
as variables, constants, subroutines, and fields.

* Variable: It is the part of memory allocated to hold different values in the flow of the program.
For example, in an expression like C=A+B, the identifiers A, B, and C are variables.

* Constant: An identifier that always returns the same value every time the program runs and at
any time within the program is called constant. After an expression like P1=3.14, the Pl constant

refers to the value 3.14 throughout the program.

FLOWCHART

-

Start/End Symbol

The terminator symbol marks the starting or ending point of the system.

usually contains the word "Start" or "End."

Action or Process Symbol
A box can represent a single step ("add two cups of
flour"), or an entire sub-process ("make bread") within a
larger process.

Document Symbol
A printed document or report.

GA?/

<EP UN/,
.V-\A

A\
\ /4

1973

26

<EP U,
.\v-"\ Q

FLOWCHART -e)

1973

Decision Symbol
A decision or branching point. Lines representing different decisions
emerge from different points of the diamond.

Input/Output Symbol
Represents material or information entering or leaving the system, such
as customer order (input) or a product (output).

Subroutine Symbol
Indicates a sequence of actions that perform a specific task embedded
within a larger process. This sequence of actions could be described in
more detail on a separate flowchart.

27

eP UN/I,

&
A\
)
x

/
<
?A

GA?

Example: Summation of two numbers

* 1973

Using pseudocode

-y

Assign T for the sum, X for the first number, Y for mond X

the second number / j;ie*; /
1. START

2. READ X value

3. READY value V

4., T=X+Y

5. WRITE T value XY

6. FINISH

Write T

28

(41

'\EP U’Vl[,

: IS
Logical Structures : Y ’

Regardless of the programming language used in the development of a computer
program, three simple logical structures are generally used in the flowcharts of this
program:

1. Sequential Structure

2. Decision Making Structure

3. Repetitive Structure

<EP U,
& Q

NG
\)4

1973

»
A

<

©

Logical Structures: Sequential structure

The sequential structure emphasizes where each operation in the program to be prepared should take

place in logical order. A second process cannot start until this build is over.

Statement_n

Sequence Control Structure

30

Logical Structures: Decision Making Structure

In modules that include more than one
sequential structure option, this structure
determines which sequential structure will

be selected under which conditions.

V

_\A’(EP UNI[,
.\V- £

)
-
e

T\e
\ /4

1973

Computation
1

Computation
2

Logical Structures: Repetitive Structure

A loop exists within the algorithm if
some rows are being processed
repeatedly.

Loops are used to describe actions that
continue as long as a certain condition

Is true.

Computation

False

'KEP UNI[,

&
A\
)
" <

* 1973 ¥

N
A
I
©

Condition

32

Example: Printing numbers between 1-5 on the screen

S T

START
num=1
WRITE num value +—

num =num + 1

num =1

,| WRITE num

IF num<6, GO TO STEP 3 —
END

—T

num=num+ 1

TRUE

num

<6

FALSE 0

<EP U,

1))
< =
u " <

X 1973 X

33

P
Example: Printing numbers between 1-5 on the screen)4

START
num =1 | OLDnum | NEWnum | SCREEN
WRITE num value +—

num =num + 1
IF num<6, GO TO STEP 3 —
END

S U1 A W N
o B~ W N -

1
2
3
4
5

S T

34

Example: Sum of odd numbers from 1 to 10

START

num=1

sum=0

IF num>10, GO TO 8
sum = sum + num
num =num + 2

GO TO4

END

num =1
sum=0

FALSE

TRUE

>10

&

sum =sum + num
num =num + 2

END

<EP U,

1))
< =
w " <

X 1973 ¥

35

A
Example: Sum of odd numbers from 1 to 10 "

1. START
2 num=1 “Oldnum | Oldsum | Newsum
3. sum=0 1 0 1 3
— 4. |F num>10, GO TO 8 3 1 4 >
5 4 9 7
5. sum =sum + num 7 9 16 9
6. num=num + 2 191 16 2> 1

— 7. GOTO4
8. END

36

<EP U,
AN
1))
< =
o ’ <
X 1973 X

Next week

Chapter 3

MATLAB FUNDAMENTALS

