

ME 444 MATLAB® FOR ENGINEERS

Lecturer:

Dr. Nurettin Furkan DOĞAN

4 th Floor Office No: 303

nfdogan@gantep.edu.tr

0342 317 1200- 2569

Tuesday: 13.30- 15:00

Friday : 10.00-11.30

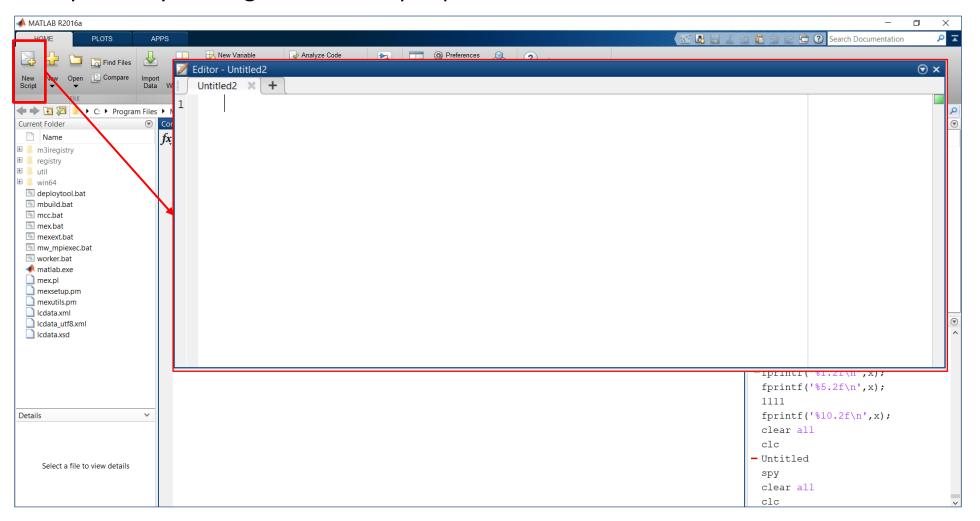
CHAPTER 5

PROGRAMMING IN MATLAB (m-files)

The following procedures are generally followed in the creation of computer software:

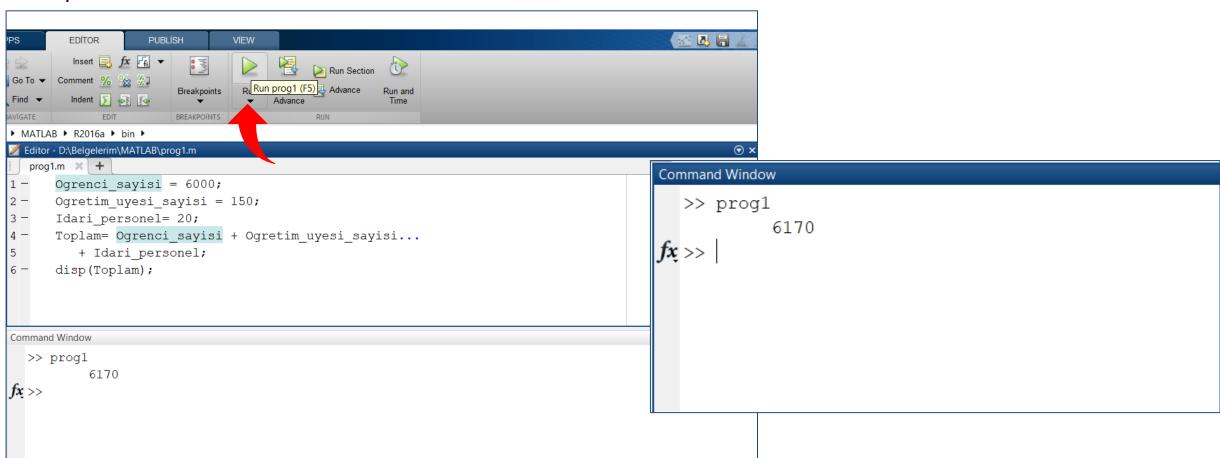
- Description of the problem (What-Why)
- Determination of solution method and steps (algorithm, flowcharts or pseudo-code)
- Coding (Translation to programming language)
- Test (Run the program)
- Update

Programming in MATLAB is most commonly done in two ways:

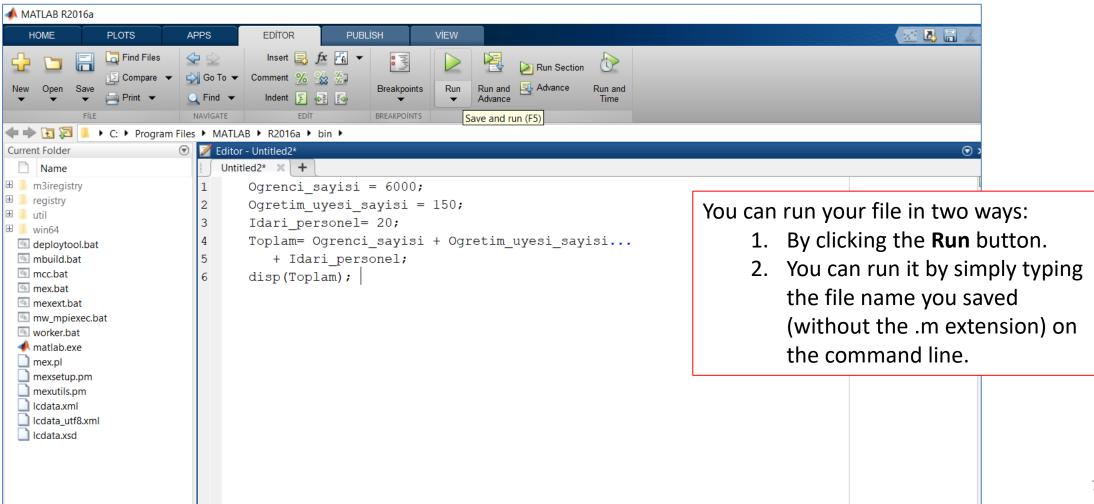

- In-line programming
- programming with m-files (script-files)

There are also two types of m-files:

- **Prose (script) m-files:** Script is the sum of commands MATLAB can execute in a row.
- **Function m-files:** These are new MATLAB functions specially produced for solving a specific problem. This topic will be covered in later lessons.



- A text editor is needed to create m files.
- m file is opened by clicking the New Script option from the File menu.



Example: For a program that calculates and prints the total number of students, faculty and staff in a department:

Example: For a program that calculates and prints the total number of students, faculty and staff in a department:

Input Function:

- Input functions are used to read data from a default or standard input device. On most systems, the default input device is the keyboard, so the input expression reads values entered from the keyboard by the user or the person running the script.
- In order for the user to know what to enter, the input function must first indicate the desired values to the user with a message (prompt).
- The simplest input function in MATLAB is the *input* function.

variable_name=input('message to user_prompt')

Example:

```
>> x=input('Vize Notunu Giriniz: ')
Vize Notunu Giriniz: 5
x =
    5
>> x=input('Vize Notunu Giriniz: \n')
Vize Notunu Giriniz:
5
x =
    5
x =
```

```
>> isim=input('Öğrenci İsmi: ','s')
Öğrenci İsmi: NEVA
isim =
NEVA
>> isim=input('Öğrenci İsmi: ')
Öğrenci İsmi: 'NEVA'
isim =
NEVA
```

- If character or string input is desired, 's' should be added after the message.
- On the other hand, it is possible to input strings without adding 's'. If the word is written in an single quote (') while entering, the string will still be entered. But doing it the first way would be more correct in terms of programming logic.

Example:

```
>> x=input('Vize Notunu Giriniz: \n')
Vize Notunu Giriniz:
a
Error using input
Undefined function or variable 'a'.
Vize Notunu Giriniz:
85
x =
85
```

```
>> t=55;
>> x=input('Vize Notunu Giriniz: \n')
Vize Notunu Giriniz:
55
x =
55
```

- Note, MATLAB warns when the user is prompted to enter a numeric value, but when the user enters an alphanumeric character.
- On the other hand, if the entered alphanumeric character is a variable and has a numeric value, the input function will still work correctly.

Practice:

Write a command line asking the user first the air temperature, then whether the value entered is C (celsius) or F (fahrenheit)? When it works it should look like this:

```
Sıcaklık değerini girin: 21
C mi, F mi? C
```


disp and fprintf Functions:

- Output expressions display strings and the results of expressions and may allow formatting or customizing how they are displayed.
- The simplest output function in MATLAB is disp which is used for display only.
- However, the disp function does not allow formatting. For example;

```
>> disp('Hello world');
Hello world
>> disp(variable_name);
```

```
>> disp(4^3)
64
>> disp('4^3')
4^3
```


disp and fprintf Functions:

• Formatted outputs can be printed using the fprintf function.

```
>> fprintf('Result is %d Newton. \n',4^3);
Result is 64 Newton.
```

- When using the fprintf function, a string (format string) is entered first, containing the text to be printed and formatting information for the expressions to be printed.
- In this example, %d is an example of format information. %d is sometimes named as a placeholder, Specifies where to print the value of the expression after the string. The character in the placeholder is called the transform character and specifies the type of value being printed.

%d	d ecimal integer
%f	float
%g	Compact format
%с	c haracter
%s	s tring

disp and fprintf Functions:

- The \n command added to the end of the text to be printed in the fprintf function means a new line and the expression from the position it is used appears on the new line.
- In the previous example, let's see what would have happened if the \n command was not typed:

```
>> fprintf('Result is %d Newton. ',4^3);
Result is 64 Newton. >>
```

• By using the \n command, any number of spaces can be left between the lines.

```
>> fprintf('The value is %d, \n\nOK!\n', 4^3)
The value is 64,
OK!
```


disp and fprintf Functions:

- The field width can also be included in the placeholder in fprintf; this specifies how many characters to use in total.
- For example, \$5d specifies a field width of 5 to print an integer (decimal integer), and \$10s specifies a field width of 10 for a string.
- For decimals (floats), the number of decimal places can also be specified; for example, %6.2f means 6 field widths (including whole number and decimal places) with two decimal places.
- Also, for decimals, only the number of decimal places can be specified; for example, % . 3f shows three decimal places.

```
>> fprintf('The int is %3d and the float is %6.2f\n',5,4.9) The int is \underline{\phantom{0}} and the float is \underline{\phantom{0}} 4.90
```

• If the field width is larger than required, leading spaces are printed, and if more decimal places than required are specified, trailing zeros are printed.

disp and fprintf Functions:

QUESTION: What do you think will happen if you try to print the number 1234.5678 using 2 decimal places and 3 field widths? For example, if you type \rightarrow fprintf('%3.2f\n', 1234.5678)

ANSWER: Prints all 1234 but rounds decimals to two digits,

1234.57

If the field width is not large enough to print the number, the field width is increased. Basically, truncating the number gives a misleading result, but rounding the decimal places doesn't change the number much.

disp and fprintf Functions:

QUESTION: What happens if you use the %d command for a decimal number? For example: for the command >> $fprintf('%d\n', 1234567.89)$

ANSWER: MATLAB will display the result using exponential (e+001 / exponential) notation:

1.234568e+06

- Putting all this together, we can program an exemplary algorithm from this point forward.
- The script below calculates and prints the area of a circle.
- It first asks the user for a radius, reads the radius, and then calculates and prints the area of the circle based on that radius.

```
Editor - C:\Users\N.Furkan\Desktop\Matlab Uygulama\area.m
area.m × +
     %This script calculates the area of a circle.
     %Asks user to enter the radius.
     %It then prints both the entered radius and
     %the calculated area value to the screen.
     radius=input('Please enter the radius: ');
     a=pi*radius^2;
     fprintf('The area is calculated as %.2f cm\xB2 ',a);
     fprintf('for radius of %.2f cm. \n', radius);
                       Command Window
                          >> area
                          Please enter the radius: 5
                          The area is calculated as 78.54 \text{ cm}^2 for radius of 5.00 \text{ cm}.
                       fx >>
```


Example: The target heart rate (THR) for an active person is defined by the equation THR= (180 – age)*0.6. We want a script that will ask for age, then calculate and print THR. When the script is executed it will look like this:

```
Enter the age: 45
THR must be 81.0 for adult person in age of 45.
```

Solution example:

Example: The target heart rate (THR) for an active person is defined by the equation THR= (180 – age)*0.6. We want a script that will ask for age, then calculate and print THR. When the script is executed it will look like this:

```
Enter the age: 45
THR must be 81.0 for adult person in age of 45.
```

Solution example:

Example: Write a MATLAB program that calculates and prints the volume and surface area of a cylinder. Ask the user to enter the radius and height of the cylinder from the keyboard.

Solution example:

```
Editor-C\Users\N.Furkan\Desktop\Matlab Uygulama\cylinder.m

| area.m | keartm | cylinder.m | + |
| %This program calculates the volume and surface area of a cylinder
| %using the radius and height values entered from the keyboard.
| 3- r=input('Enter radius: ');
| 4- h=input('Enter height: ');
| 5- vol=pi*r*r*h;
| 6- s_area=2*pi*r*h+2*pi*r*r;
| 7- fprintf('Volume is %5.2f cm3 and surface area %5.2f cm2 ',vol,s_area);
| 8- fprintf('for cylinder having radius of %d and height of %d. \n',r,h);
```

```
command Window
>> cylinder
Enter radius: 3
Enter height: 9
Volume is 254.47 cm3 and surface area 226.19 cm2 for cylinder having radius of 3 and height of 9.
```


Next week

Chapter 5

Programming in MATLAB-2 (User defined functions)