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Numerical Methods - Definition

* Numerical methods are mathematical techniques used to
approximate solutions to problems that may be difficult or
impossible to solve analytically.

* Numerical methods involve large numbers of tedious
arithmetic calculations.

* These methods have gained popularity due to the advances
in efficient computational tools such as digital computers
and calculators.




Noncomputer Methods

 Solutions were derived for some problems using analytical, or exact,
methods.

* Graphical solutions used to solve complex problems but the results
are not very precise. They are extremely boring to implement without
aid of computers. Graphical techniques are often limited to problems
that can be described using three or fewer dimensions.

e Calculators and slide rules were used to implement numerical
methods manually. Manual calculations are slow and tedious.
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Analytical vs. Numerical Methods

* Examples: Analytical Methods

- Differentiation
ay =, .
T (x“ —sin(x)) = 2x — cos(x)
- Integration
f 3 + X X4 +x2 X_I_
x> +x—et = —e c
4 2

- Root(s) of an Equation

—b + Vb2 — 4ax
2a

ax’+bx+c=0-x=



Analytical vs. Numerical Methods

Need for Numerical Methods

* In general, there are few analytical (closed-form) solutions
for many practical engineering problems.

* Numerical methods can handle:
 Large systems of equations
* Non-linearity

 Complicated geometries that are common in engineering practice
and that are often impossible to solve analytically.



Mathematician and Engineer

The thinking of engineers toward mathematics has always
been different from that of mathematicians.

A mathematician may be interested in finding out whether
a solution to a differential equation exists.

* An engineer simply assumes that the existence of a physical

system is proof enough of the existence of a solution and
focuses instead on finding it.




Reasons to Study Numerical Methods

* Numerical methods are extremely powerful problem-solving tools.
They are capable of handling large systems of equations,
nonlinearities, and complicated geometries

* It enables you to intelligently use the commercial software packages
as well as designing your own algorithm.

* Numerical Methods are efficient vehicles in learning to use computers

* It reinforces your understanding of mathematics; where it reduces
higher mathematics to basic arithmetic operation.




Course Contents

Finding roots of nonlinear equations

(a) Part 2: Roots of equations Solve f(x) = 0 for x.

f(x) 4

Root




Finding roots of nonlinear equations

* Finding the roots of nonlinear equations is a common task in mechanical engineering,
especially in the context of structural analysis, control systems, and fluid dynamics.

* Example: Structural Analysis - Buckling Load Calculation l*’
The critical buckling load for a slender column can be calculated using Euler's L‘ . q
formula, which is a nonlinear equation: :;f"’ ;
P _ arE-1 |
critical — Fz.72
Where: , be =

* P itical = Critical buckling load

=

* E =Young's modulus of the material

* I = Moment of inertia of the column's cross-sectional shape
* K = Effective length factor (depends on boundary conditions)

* L =Length of the column



Course Contents

Solving linear algebraic system of equations

(b) Part 3: Linear algebraic equations
Given the ¢'s and the ¢'s, solve

aq1X1 + dqXy = Cy
d91X1 + dgpXy = Co
for the x's.

x21

Solution




Solving linear algebraic system of equations

* Solving linear algebraic systems of equations is a fundamental task in mechanical
engineering, as it is often used in various engineering simulations and analyses.

: .. 20 kN
* Example: Structural Analysis - Internal Load Calculation in Trusses
The truss structure consists of interconnected bars and nodes, X
and the engineer wants to determine the internal forces 3Im
(tensions and compressions) in each bar when subjected to
external loads. Y A

To solve this problem, the engineer can create a set of linear

equations based on the principles of static equilibrium for each
node in the truss. The equations relate the forces acting on
each node to zero in both the horizontal and vertical directions.

The equations can be written in matrix form as follows:

Ax =0>b



Solving linear algebraic system of equations

 Example: Structural Analysis - Internal Load Calculation in Trusses

20 kN
Ar=0»>
Where: B
*A is the coefficient matrix representing the connectivity of the A 12 kN
truss members.
*x is the vector of unknown forces in each truss member. 3m

b is the vector of external loads applied to the truss.

: : Y A C
Once the internal forces are known, the engineer can assess whether D
any member is in tension or compression and check if they meet the T 4 A ﬁ
design criteria for safety. This analysis is crucial for ensuring the truss < m + 11 >

structure's stability and integrity under the applied loads.

Similar linear algebraic techniques are applied in various other mechanical engineering applications, such
as finite element analysis, heat transfer calculations, and control systems design
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(¢) Part 4: Optimization
Determine x that gives optimum f(x).

J(x) 4

Minimum

Y
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(d) Part 5: Curve fitting

fx) 4 J(x)

Interpolation

Regression




Curve Fitting

e Curve fitting is a valuable technique in mechanical engineering for modeling and
analyzing experimental data, as well as for designing and optimizing mechanical systems.

Example: Constructing a Tool Life Equation

The following results were obtained from experiments done
while milling AISI-4140 steel using fixed values for feed rate
and depth of cut.

Cutting speed , V (m/min) 160 180 200 220 240 B
Tool life, T (min) 7.0 5.5 5.0 3.5 2.0

To determine the tool life equation, method of least-square can be used. By using this equation,
tool life of the turning machine can be predicted.

VT*=b Where g and b are constants.
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(e) Part 6: Integration
I =" fx) dx
Find the area under the curve.

Jx) 4

N\




Numerical Integration

Numerical integration is widely used in mechanical engineering for various applications.
Example: The force exerted by the fluid on the circular side

A closed cylindrical barrel, of radius R and length L, is half full

of a fluid with a density p and lies on the ground on the edge

AB as shown.
The force exerted by the fluid on the circular side is given by

R
F =f 2,0(\/R2 —x%).x.dx
0
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() Part 7: Ordinary differential equations

Given
ar = Ar =/

solve for y as a function of t.
Vie1=Yi + flt;, y;) At

® Slope-=
| f(ri’ y:)

e— At —

I; fi 41 t



Numerical Differentiation

 Numerical differentiation plays a crucial role in mechanical engineering for various
applications, particularly when dealing with experimental data or numerical simulations.

Example: Velocity and Acceleration Analysis in Mechanism Design

Consider a mechanical engineer working on the design of a cam-follower
mechanism. In this mechanism, a cam rotates, and a follower connected to

it moves up and down.
The engineer wants to determine the velocity and acceleration of the

follower as it moves over a complete cycle of cam rotation.

To analyze the motion, the engineer collects position data for the
follower as a function of time. This data is typically obtained
experimentally or through simulation.




Numerical Differentiation

Example: Velocity and Acceleration Analysis in Mechanism Design

Numerical Differentiation for Velocity: To find the velocity of the follower at
each time point, the engineer can use numerical differentiation techniques,
such as finite differences. The first-order finite difference formula for velocity
is:

y(t +At) — y(t)

Vo) = At

Numerical Differentiation for Acceleration: Similarly, to find the acceleration
of the follower at each time point, the engineer can apply numerical
differentiation once more. The second-order finite difference formula for

acceleration is:

V(t+ At) —V(t)
At

a(t) =
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(2) Part 8: Partial differential equations

Given

9%u 9%u
- = f(x, y)
ax? E}yz Ty
solve for u as a function of
xandy

y‘.......

Y




22.09.2025
29.09.2025
06.10.2025
13.10.2025
20.10.2025
27.10.2025
03.11.2025
10.11.2025
17.11.2025
24.11.2025
01.12.2025
08.12.2025
15.12.2025
22.12.2025

ME 209 NUMERICAL METHODS TIMELINE

Basic definitions in numerical analysis

Mathematical Model- Numerical error analysis - Taylor series
Finding the roots of equations: Bisection method

Finding the roots of equations: Newton-Raphson - Secant method
Solutions of Linear Equation Systems

Solutions of Linear Equation Systems

Midterm 1

One-Dimensional Unconstrained Optimization

Least Squares Regression

Polynomial Interpolation

Numerical integration: Trapezoid Method - Simpson Method
Integration of equations

Midterm 2

Numerical differentiation

Ch.1
Ch.1, 3-4
Ch.5-6
Ch.6-7
Ch.9
Ch.10-11

Ch.13
Ch.17
Ch.18
Ch.21
Ch.22

Ch.23



Chapter 1

Mathematical Modeling



A Simple Mathematical Model

* A mathematical model can be broadly defined as a formulation or equation that
expresses the essential features of a physical system or process in mathematical
terms.

* Generally, it can be represented as a functional relationship of the form

Dependent _ f independent Srameters forcing
variable variables * P " functions



A Simple Mathematical Model

Dependent _ f independent S rameters forcing
variable variables °’ P " functions

Dependent variable is a characteristic that usually reflects the behavior or state of
the system;

Independent variables are usually dimensions, such as time and space, along
which the system’s behavior is being determined,;

Parameters are reflective of the system’s properties or composition;

Forcing functions are external influences acting upon the system.




A Simple Mathematical Model

* Example: Newton’s Second Law of Motion

* the time rate of change of momentum of a body is equal to the resultant
force acting on it

F = ma (1.2 a = — (1.3)

* F = net force acting on the body (N, or kg m/s?), Forcing function

* m = mass of the object (kg), The parameter representing a property
of the system

* a = its acceleration (m/s?). The dependent variable



Typical of mathematical models of the physical
world:

* It describes a natural process or system in mathematical terms.
* It represents an idealization and simplification of reality.
* It yields reproducible results and can be used for predictive purposes.

Because of its simple algebraic form, the solution of Eqg. (1.2) can be
obtained easily. However, other mathematical models of physical
phenomena may be much more complex, and either cannot be solved
exactly or require more sophisticated mathematical techniques than
simple algebra for their solution.



Complex Mathematical Model

* Example: Newton’s Second Law of Motion

A model for this case can be derived by expressing the acceleration as
the time rate of change of the velocity (dy/dt) and substituting it into

Eqg. (1.3) to yield
dv F

— = — where v 1s velocity (m/s) and ¢ 1s time (s).
dt m

* |If the net force is positive, the object will accelerate.

* Ifitis negative, the object will decelerate.

e |f the net force is zero, the object’s velocity will remain at a
constant level.

Schematic diagram of the
forces acting on a falling
parachutist. F, is the
downward force due to
gravity. F, is the upward
force due to air resistance.



Complex Mathematical Model

* the net force F = FD — FU

* the force due to gravity _
L 5 Fp = mg
* g = gravitational constant, 9.81 (m/s?)
* Air resistance
Iy

 c = drag coefficient (kg/s) - v



Complex Mathematical Model

dv F dv mg — cv dv C
dt m dt m dt m

More advanced techniques, such as those of calculus, must be applied to obtain

an exact or analytical solution.
For example, if the parachutist is initially at rest (v =0 at t = 0), calculus can be

used to solve equation

m
o =1~ )

where v(t) = the dependent variable, t = the independent variable, cand m =
parameters, and g = the forcing function.



Analytical Solution to the Falling Parachutist Problem

* Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot
air balloon. Use Eqg. (1.10) to compute velocity prior to opening the chute. The
drag coefficient is equal to 12.5 kg/s.

e Solution.

_ 9:81(68.1)

1 5 (1 — e~ 123/6800) = 53 44 (1 — ¢~ 01839)



t, s v, m/s “ Terminal velocity
O 0.00 B
2 16.42
4 2/7.80
6 35.68 4_{3
8 4114 g
10 44 92
12 4754
0 53.44

IS



Numerical Solution for Mathematical Models

do Av  o(ti) — 0(1)

dr At tivg — 1
(W) = m - m e e
True slope v(t;) = velocity at an 1nitial time ¢,
dv/dt N
Ay - v(t;;;) = velocity at some later time 7,
| dv - Av
Approximate slope from calculus - llm

2 _ V(t,q) — V(T)
At li1— I

dr  At—0 At

‘W) -

1

I ri'+1 I

o~




equation can then be rearranged to yield

C

g — U(fi)] (tiv1 — 1) (1.12)

v(tip1) = 0(f;) + .

If you are given an initial value for velocity at some time #;, you can easily compute
velocity at a later time ¢, ;. This new value of velocity at 7, can in turn be employed to
extend the computation to velocity at z,,, and so on. Thus, at any time along the way,

New value = old value + slope X step size

Note that this approach is formally called Euler’s method.




Numerical Solution to the Falling Parachutist Problem

« Problem Statement. Perform the same computation as in Example 1.1 but use
Eqg. (1.12) to compute the velocity. Employ a step size of 2 s for the calculation.

* Solution. At the start of the computation (t; = 0), the velocity of the parachutist is
zero. Using this information and the parameter values from Example 1.1, Eq.

(1.12) can be used to compute velocity att,,, =2 s:
12.5
= ——0)]12 =19.62 m/
v =0+ [9.81 68.1( )] 9 S

For the next interval (fromt=2to4s)

12.5
0 =19.62 + [9.81 - 681(19.62)] 2 = 32.04 m/s



The calculation is continued in a similar fashion to obtain additional values:

v, m/s

co OO~ N O

10
12

0.00
19.62
32.04
39.90
44 .87
48.02
50.01
53.44

40

v, m/s

20

'Y

—_ —

Terminal velocity

Approximate, numerical solution

\

Exact, analytical solution

I,S



CHARACTERISTICS OF NUMERICAL METHODS

Numerical methods have most of the following characteristics:

1. The solution procedure is iterative, with the accuracy of the estimated solution improving
with each iteration.

2. The solution procedure provides only an approximation to the true, but unknown, solution.

3. Aninitial estimate of the solution may be required.

4. The solution procedure is conceptually simple, with algorithms representing the solution
procedure that can be easily programmed on a digital computer.

5. The solution procedure may occasionally diverge from rather than converge to the true

solution.



CHARACTERISTICS OF NUMERICAL METHODS

Example 1: Square Root

Finding the square root of a number is a frequent task- On a hand calculator, we simply enter the
number and then press the 1/x key. Let’s assume that we don’t have calculator or computer and

that we need to develop a method for estimating \/x , where x is any positive real value.

We can start by assuming that we have an initial estimate of v/x , which we will denote as x,, and

Xo is in error by an unknown amount Ax.

x—x2

xo + Ax = +/x - Both sides are squared and solved for Ax —» Ax = x
0



CHARACTERISTICS OF NUMERICAL METHODS

For the revised extimate of x,we can add Ax to the x: X1 = Xo + Ax

Generalizing the notion, the concept will be:

x—x;>

Xiy1 = X; + Ax; Ax =

2X;

To illustrate the equations above, let’s find V150, we know that 122 = 144 sox, = 12 s a
reasonable initial estimate. Therefore the first iteration:
x—x9% _ 150-1272

Ax = 274 = 2(12) = (0.25 X1 = Xgo + AXO =12 + 0.25 =12.25

Second iteration:

Ay = Xo%a® _ 150-1225° o goocoy, = x, 4+ Ax; = 12.25 — 0.00255 = 12.24745
2X1 2(12.25)




CHARACTERISTICS OF NUMERICAL METHODS

The third iteration:

2 _ 2
Ax =222 = 1520(12122:;“1;“)5 = —0.12861x107° X3 = %, + Ax, = 12.2474487
2 .

The third iteration is identical to x, to seven digits. While the true value is not usually known, the
true solution of V150 equals 12.24744871.

Thus, x, was accurate to seven digits, and x3; was accurate to nine digits.



CHARACTERISTICS OF NUMERICAL METHODS

* Inthe preceding example, with respect to the first characteristic identified at the beginning of
this section, the solution procedure is iterative. The equations were applied three times, with
the accuracy improving with each iteration.

 Second, the solution procedure provided an approximation of the true value; the initial
estimate of 12 was a first approximation, while x4, x,, and x; were subsequent
approximations.

* Third, the solution procedure required an initial estimate; for our example problem, an initial
estimate of 12 was used.

* Fourth, the solution procedure is conceptually simple and can be easily programmed.

e Fifth, the procedure would have converged even if a less accurate initial estimate, such as 10 or
20, were used. Other numerical methods may not converge if the initial estimate is not a
reasonably good estimate.



CONSERVATION LAWS AND ENGINEERING

* Aside from Newton’s second law, there are other major organizing
principles in engineering.

* Among the most important of these are the conservation laws.
* Change = 0 = increases — decreases

or

* Increases = decreases



NEXT WEEK
Numerical error analysis - Taylor
series
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