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Numerical Methods - Definition

• Numerical methods are mathematical techniques used to
approximate solutions to problems that may be difficult or
impossible to solve analytically.

• Numerical methods involve large numbers of tedious
arithmetic calculations.

• These methods have gained popularity due to the advances 
in efficient computational tools such as digital computers 
and calculators. 



Noncomputer Methods

• Solutions were derived for some problems using analytical, or exact, 
methods. 

• Graphical solutions used to solve complex problems but the results 
are not very precise. They are extremely boring to implement without 
aid of computers. Graphical techniques are often limited to problems
that can be described using three or fewer dimensions.

• Calculators and slide rules were used to implement numerical
methods manually. Manual calculations are slow and tedious.



The three phases of engineering 
problem solving in 
(a) the precomputer and 
(b) the computer era.



Analytical vs. Numerical Methods

• Examples: Analytical Methods

- Differentiation
𝑑𝑦

𝑑𝑥
𝑥2 − sin 𝑥 = 2𝑥 − cos(𝑥)

- Integration 

න 𝑥3 + 𝑥 − 𝑒𝑥 =
𝑥4

4
+

𝑥2

2
− 𝑒𝑥 + 𝑐

- Root(s) of an Equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0 → 𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑥

2𝑎



Analytical vs. Numerical Methods

Need for Numerical Methods

• In general, there are few analytical (closed-form) solutions 
for many practical engineering problems.

• Numerical methods can handle:
• Large systems of equations

• Non-linearity

• Complicated geometries that are common in engineering practice 
and that are often impossible to solve analytically.



Mathematician and Engineer

The thinking of engineers toward mathematics has always 
been different from that of mathematicians.

• A mathematician may be interested in finding out whether
a solution to a differential equation exists.

• An engineer simply assumes that the existence of a physical
system is proof enough of the existence of a solution and
focuses instead on finding it.



Reasons to Study Numerical Methods

• Numerical methods are extremely powerful problem-solving tools.
They are capable of handling large systems of equations,
nonlinearities, and complicated geometries

• It enables you to intelligently use the commercial software packages
as well as designing your own algorithm.

• Numerical Methods are efficient vehicles in learning to use computers

• It reinforces your understanding of mathematics; where it reduces
higher mathematics to basic arithmetic operation.



Course Contents

(a) Part 2: Roots of equations Solve f(x) = 0 for x.

Finding roots of nonlinear equations



Finding roots of nonlinear equations

• Finding the roots of nonlinear equations is a common task in mechanical engineering,
especially in the context of structural analysis, control systems, and fluid dynamics.

• Example: Structural Analysis - Buckling Load Calculation

The critical buckling load for a slender column can be calculated using Euler's 
formula, which is a nonlinear equation:



Course Contents

Solving linear algebraic system of equations



Solving linear algebraic system of equations
• Solving linear algebraic systems of equations is a fundamental task in mechanical

engineering, as it is often used in various engineering simulations and analyses.

• Example: Structural Analysis - Internal Load Calculation in Trusses

The truss structure consists of interconnected bars and nodes, 

and the engineer wants to determine the internal forces 

(tensions and compressions) in each bar when subjected to 

external loads.

To solve this problem, the engineer can create a set of linear 

equations based on the principles of static equilibrium for each 

node in the truss. The equations relate the forces acting on 

each node to zero in both the horizontal and vertical directions. 

The equations can be written in matrix form as follows:



Solving linear algebraic system of equations
• Example: Structural Analysis - Internal Load Calculation in Trusses

Where:
•A is the coefficient matrix representing the connectivity of the 
truss members.
•x is the vector of unknown forces in each truss member.
•b is the vector of external loads applied to the truss.

Once the internal forces are known, the engineer can assess whether 
any member is in tension or compression and check if they meet the 
design criteria for safety. This analysis is crucial for ensuring the truss 
structure's stability and integrity under the applied loads.

Similar linear algebraic techniques are applied in various other mechanical engineering applications, such 
as finite element analysis, heat transfer calculations, and control systems design
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Curve Fitting

• Curve fitting is a valuable technique in mechanical engineering for modeling and
analyzing experimental data, as well as for designing and optimizing mechanical systems.

Example: Constructing a Tool Life Equation

The following results were obtained from experiments done 
while milling AISI-4140 steel using fixed values for feed rate 
and depth of cut.

To determine the tool life equation, method of least-square can be used. By using this equation, 
tool life of the turning machine can be predicted.

Where a and b are constants.𝑉𝑇𝑎 = 𝑏
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Numerical Integration
Numerical integration is widely used in mechanical engineering for various applications.

Example: The force exerted by the fluid on the circular side

A closed cylindrical barrel, of radius R and length L, is half full

of a fluid with a density ρ and lies on the ground on the edge

AB as shown.
The force exerted by the fluid on the circular side is given by

𝐹 = න
0

𝑅

2𝜌( 𝑅2 − 𝑥2). 𝑥. 𝑑𝑥
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Numerical Differentiation
• Numerical differentiation plays a crucial role in mechanical engineering for various

applications, particularly when dealing with experimental data or numerical simulations.

Example: Velocity and Acceleration Analysis in Mechanism Design

Consider a mechanical engineer working on the design of a cam-follower
mechanism. In this mechanism, a cam rotates, and a follower connected to
it moves up and down.
The engineer wants to determine the velocity and acceleration of the
follower as it moves over a complete cycle of cam rotation.

To analyze the motion, the engineer collects position data for the
follower as a function of time. This data is typically obtained
experimentally or through simulation.



Numerical Differentiation
Example: Velocity and Acceleration Analysis in Mechanism Design

Numerical Differentiation for Velocity: To find the velocity of the follower at
each time point, the engineer can use numerical differentiation techniques,
such as finite differences. The first-order finite difference formula for velocity
is:

𝑉 𝑡 =
𝑦 𝑡 + ∆𝑡 − 𝑦(𝑡)

∆𝑡

Numerical Differentiation for Acceleration: Similarly, to find the acceleration
of the follower at each time point, the engineer can apply numerical
differentiation once more. The second-order finite difference formula for
acceleration is:

𝑎 𝑡 =
𝑉 𝑡 + ∆𝑡 − 𝑉(𝑡)

∆𝑡
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ME 209 NUMERICAL METHODS TIMELINE

22.09.2025 Basic definitions in numerical analysis Ch.1
29.09.2025 Mathematical Model- Numerical error analysis - Taylor series Ch.1, 3-4
06.10.2025 Finding the roots of equations: Bisection method Ch.5-6
13.10.2025 Finding the roots of equations: Newton-Raphson - Secant method Ch.6-7
20.10.2025 Solutions of Linear Equation Systems Ch.9
27.10.2025 Solutions of Linear Equation Systems Ch.10-11
03.11.2025 Midterm 1
10.11.2025 One-Dimensional Unconstrained Optimization Ch.13
17.11.2025 Least Squares Regression Ch.17
24.11.2025 Polynomial Interpolation Ch.18
01.12.2025 Numerical integration: Trapezoid Method - Simpson Method Ch.21
08.12.2025 Integration of equations Ch.22
15.12.2025 Midterm 2
22.12.2025 Numerical differentiation Ch.23



Chapter 1 
– 

Mathematical Modeling



A Simple Mathematical Model

• A mathematical model can be broadly defined as a formulation or equation that
expresses the essential features of a physical system or process in mathematical
terms.

• Generally, it can be represented as a functional relationship of the form



A Simple Mathematical Model

• Dependent variable is a characteristic that usually reflects the behavior or state of 
the system; 

• Independent variables are usually dimensions, such as time and space, along 
which the system’s behavior is being determined; 

• Parameters are reflective of the system’s properties or composition; 

• Forcing functions are external influences acting upon the system.



A Simple Mathematical Model

• Example: Newton’s Second Law of Motion
• the time rate of change of momentum of a body is equal to the resultant 

force acting on it

• F = net force acting on the body (N, or kg m/s2), Forcing function

• m = mass of the object (kg), The parameter representing a property 
of the system

• a = its acceleration (m/s2). The dependent variable

(1.2) (1.3) 



Typical of mathematical models of the physical 
world:
• It describes a natural process or system in mathematical terms.

• It represents an idealization and simplification of reality. 

• It yields reproducible results and can be used for predictive purposes. 

Because of its simple algebraic form, the solution of Eq. (1.2) can be
obtained easily. However, other mathematical models of physical
phenomena may be much more complex, and either cannot be solved
exactly or require more sophisticated mathematical techniques than
simple algebra for their solution.



Complex Mathematical Model

• Example: Newton’s Second Law of Motion

Schematic diagram of the
forces acting on a falling
parachutist. FD is the
downward force due to
gravity. FU is the upward
force due to air resistance.

A model for this case can be derived by expressing the acceleration as
the time rate of change of the velocity (dy/dt) and substituting it into
Eq. (1.3) to yield

where 𝜐 is velocity (m/s) and t is time (s).

• If the net force is positive, the object will accelerate. 
• If it is negative, the object will decelerate. 
• If the net force is zero, the object’s velocity will remain at a 

constant level.



• the net force

•  the force due to gravity

• g = gravitational constant, 9.81 (m/s2)

• Air resistance

• c = drag coefficient (kg/s)

Complex Mathematical Model



Complex Mathematical Model

More advanced techniques, such as those of calculus, must be applied to obtain
an exact or analytical solution.
For example, if the parachutist is initially at rest (𝜐 = 0 at t = 0), calculus can be
used to solve equation

where 𝜐(t) = the dependent variable, t = the independent variable, c and m = 
parameters, and g = the forcing function.

(1.9) 

(1.10) 



Analytical Solution to the Falling Parachutist Problem

• Problem Statement. A parachutist of mass 68.1 kg jumps out of a stationary hot
air balloon. Use Eq. (1.10) to compute velocity prior to opening the chute. The
drag coefficient is equal to 12.5 kg/s.

• Solution.





Numerical Solution for Mathematical Models



(1.12) 



Numerical Solution to the Falling Parachutist Problem

• Problem Statement. Perform the same computation as in Example 1.1 but use 
Eq. (1.12) to compute the velocity. Employ a step size of 2 s for the calculation. 

• Solution. At the start of the computation (ti = 0), the velocity of the parachutist is 
zero. Using this information and the parameter values from Example 1.1, Eq. 
(1.12) can be used to compute velocity at ti+1 = 2 s:

For the next interval (from t = 2 to 4 s)



The calculation is continued in a similar fashion to obtain additional values:



CHARACTERISTICS OF NUMERICAL METHODS

Numerical methods have most of the following characteristics:

1. The solution procedure is iterative, with the accuracy of the estimated solution improving

with each iteration.

2. The solution procedure provides only an approximation to the true, but unknown, solution.

3. An initial estimate of the solution may be required.

4. The solution procedure is conceptually simple, with algorithms representing the solution

procedure that can be easily programmed on a digital computer.

5. The solution procedure may occasionally diverge from rather than converge to the true

solution.



CHARACTERISTICS OF NUMERICAL METHODS

Example 1: Square Root

Finding the square root of a number is a frequent task· On a hand calculator, we simply enter the

number and then press the 𝑥 key. Let’s assume that we don’t have calculator or computer and 

that we need to develop a method for estimating 𝑥 , where x is any positive real value.

We can start by assuming that we have an initial estimate of 𝑥 , which we will denote as 𝑥0, and

𝑥0 is in error by an unknown amount ∆𝑥.

𝑥0 + ∆𝑥 = 𝑥  → 𝐵𝑜𝑡ℎ 𝑠𝑖𝑑𝑒𝑠 𝑎𝑟𝑒 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑎𝑛𝑑 𝑠𝑜𝑙𝑣𝑒𝑑 𝑓𝑜𝑟 ∆𝑥 → ∆𝑥 =
𝑥−𝑥2

2𝑥0
 



CHARACTERISTICS OF NUMERICAL METHODS

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑣𝑖𝑠𝑒𝑑 𝑒𝑥𝑡𝑖𝑚𝑎𝑡𝑒 𝑜𝑓 𝑥, 𝑤𝑒 𝑐𝑎𝑛 𝑎𝑑𝑑 ∆𝑥 𝑡𝑜 𝑡ℎ𝑒 𝑥0:

∆𝑥 =
𝑥−𝑥𝑖

2

2𝑥𝑖
 

𝑥1 = 𝑥0 + ∆𝑥

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑖𝑛𝑔 𝑡ℎ𝑒 𝑛𝑜𝑡𝑖𝑜𝑛, 𝑡ℎ𝑒 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑤𝑖𝑙𝑙 𝑏𝑒: 

𝑥𝑖+1 = 𝑥𝑖 + ∆𝑥𝑖

To illustrate the equations above, let’s find 150, we know that 122 = 144 so 𝑥0 = 12 is a 
reasonable initial estimate. Therefore the first iteration:

∆𝑥 =
𝑥−𝑥0

2

2𝑥0
=

150−122

2(12)
= 0.25 𝑥1 = 𝑥0 + ∆𝑥0 = 12 + 0.25 = 12.25

Second iteration:

∆𝑥 =
𝑥−𝑥1

2

2𝑥1
=

150−12.252

2(12.25)
= −0.00255 𝑥2 = 𝑥1 + ∆𝑥1 = 12.25 − 0.00255 = 12.24745



CHARACTERISTICS OF NUMERICAL METHODS

The third iteration:

∆𝑥 =
𝑥−𝑥2

2

2𝑥2
=

150−12.247452

2(12.24745)
= −0.12861𝑥10−5 𝑥3 = 𝑥2 + ∆𝑥2 = 12.2474487

The third iteration is identical to 𝑥2 to seven digits. While the true value is not usually known, the 

true solution of 150  equals 12.24744871.

Thus, 𝑥2 was accurate to seven digits, and 𝑥3 was  accurate to nine digits. 



CHARACTERISTICS OF NUMERICAL METHODS

• In the preceding example, with respect to the first characteristic identified at the beginning of 
this section, the solution procedure is iterative. The equations were applied three times, with 
the accuracy improving with each iteration.

• Second, the solution procedure provided an approximation of the true value; the initial 
estimate of 12 was a first approximation, while 𝑥1, 𝑥2, and 𝑥3 were subsequent 
approximations.

•  Third, the solution procedure required an initial estimate; for our example problem, an initial 
estimate of 12 was used.

• Fourth, the solution procedure is conceptually simple and can be easily programmed.
• Fifth, the procedure would have converged even if a less accurate initial estimate, such as 10 or 

20, were used. Other numerical methods may not converge if the initial estimate is not a 
reasonably good estimate.



CONSERVATION LAWS AND ENGINEERING

• Aside from Newton’s second law, there are other major organizing 
principles in engineering.

• Among the most important of these are the conservation laws.

• Change = 0 = increases − decreases

or

• Increases = decreases



NEXT WEEK
Numerical error analysis - Taylor 

series
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