
Introduction to Python
Language

INPUT- OUTPUT (STRING) MANIPULATION

OBJECTIVES

• To become familiar with various operations that can be performed on

strings through built-in functions and string methods.

• To understand the basic idea of sequences and indexing as they apply to

Python strings and lists.

• To be able to apply string formatting to produce attractive, informative

program output.

• To understand basic file-processing concepts and techniques for reading

and writing text files in Python.

• To understand basic concepts of cryptography.

• To understand and write programs that process textual information.

Basic String Operations

• We might want to access the individual characters that make up the string. In Python, this can

be done through the operation of indexing. We can think of the positions in a string as being

numbered, starting from the left with 0.

• The general form for indexing is <string> [<expr>] .

• Here are some interactive indexing examples: • By the way, Python also allows

indexing from the right end of a

string using negative indexes.

• Indexing returns a string containing a single character from a larger string. It is also possible to

access a sequence of characters or substring from a string.

• In Python, this is accomplished through an operation called slicing.

• Slicing takes the form <string> [<start> : <end>].

A slice produces the

substring starting at the

position given by start and

running up to, but not

including, position end.

• Since strings are sequences of characters, you can iterate through the characters using a Python

for loop.

• Basic string operations are summarized in table below.

Table 5.1 Basic string operations

Simple String Processing

• We want to write a program that reads a person's name and computes the corresponding

username. (Use first initial and seven characters of last name as a username) Using this

method, the username for John Smith would just be "Jsmith."

• Here's an example run:

• Here is another problem that we can solve with string operations. Suppose we want to print

the abbreviation of the month that corresponds to a given month number. The input to the

program is an int that represents a month number (1-12), and the output is the abbreviation

for the corresponding month. For example, if the input is 3, then the output should be Mar,

for March.

• We recognize that this is a decision problem. On the other hand, we can accomplish it by

simply slicing operation.

• If the input is 3, then the output should be Mar, for March.

• The basic idea is to store all the month names in a big string:

• Since each month is represented by three letters, if we knew where a given month started in

the string, we could easily extract the abbreviation:

This would get us the substring of length 3 that

starts in the position indicated by pos.

• Let's try a few examples and see what we find. Remember that string indexing starts at 0.

To get the correct multiple, we just subtract 1 from

the month number and then multiply by 3.

• Now, we’re ready to write the program.

Python Lists as Sequences

• As a matter of fact, the operations given in Table 5.1 are not only string operations. They are

operations that apply to sequences.

• Python lists are also a kind of sequence. That means we can also index, slice, and concatenate

lists, as the following session illustrates:
One of the nice things about lists is that they are

more general than strings.

Strings are always sequences of characters,

whereas lists can be sequences of arbitrary

objects. We can mix the types up.

• Using a list of strings, we can rewrite our month abbreviation program from the previous

section and make it even simpler:

String Representation and Message Encoding

• A computer represents strings in this way: Each character is translated into a number, and the

entire string is stored as a sequence of (binary) numbers in computer memory.

• It doesn't really matter what number is used to represent any given character as long as the

computer is consistent about the encoding/decoding process.

• Today, computer systems use industry standard encodings.

• One important standard is called ASCII (American

Standard Code for Information Interchange).

• ASCII uses the numbers 0 through 127 to represent the

characters typically found on an (American) computer

keyboard, as well as certain special values known as

control codes that are used to coordinate the sending and

receiving of information.

• Most modern systems are moving to Unicode, a much

larger standard that aims to include the characters of

nearly all written languages.

The ord()and chr()Functions

• Python provides a couple of built-in functions that allow us to switch back and forth between

characters and the numeric values used to represent them in strings.

• The ord function returns the numeric ("ordinal") code of a single character string, while chr

goes the other direction. Here are some interactive examples:

Programming an Encoder

• Using the Python ord and chr functions, we can write some simple programs that automate the

process of turning messages into sequences of numbers and back again.

• The algorithm for encoding the message is simple:

• Here the Python codes:

• Here an example run for the code:

One thing to notice about this

result is that even the space

character has a corresponding

Unicode number. It is represented

by the value 32.

Programming a Decoder

• Now that we have a program to turn a message into a sequence of numbers, it would be nice

if our friend on the other end had a similar program to turn the numbers back into a readable

message.

• Our decoder program will prompt the user for a sequence of Unicode numbers and then print

out the text message with the corresponding characters.

• Here is the decoding algorithm:

Before the loop, the accumulator variable message is initialized to be an empty string; that is, a string that

contains no characters ‘ ’ . Each time through the loop, a number from the input is converted into an

appropriate character and appended to the end of the message constructed so far.

• How exactly do we get the sequence of numbers to decode? We don't even know how many

numbers there will be.

• First, we will read the entire sequence of numbers as a single string using input. Then we will

split the big string into a sequence of smaller strings, each of which represents one of the

numbers.

• Here is the complete algorithm:

The .split() Function

• Strings have some built-in methods in addition to the generic sequence operations that we have

used so far.

• The split method splits a string into a list of substrings. By default, it will split the string

wherever a space occurs.

• Here an example:

• Split can be used to split a string at places other than spaces by supplying the character to

split on as a parameter. Here an example for that:

>>> myString = "Hello, string methods ! "

>>> myString . split ()

['Hello, ', 'string' , 'methods ! ']

>>> myString . split(",")

['Hello', ' string methods ! ‘]

>>> "32, 24, 25, 57" . split (", ")

[' 32' ' '24' ' '25' ' '57']

• Here another example, we could get the x and y values of a point in a single input string, turn

it into a list using the split method, and then index into the resulting list to get the individual

component strings as illustrated in the following interaction:

>>> coords = input ("Enter the point coordinates (x, y) : ") . split(",")

Enter the point coordinates (x, y) : 3.4, 6.25

>>> coords

[‘3.4’,’6.25’]

>>> coords [0]

‘3.4’

>> coords [1]

‘6.25’

coords = input ("Enter the point coordinates (x, y) : ").split(",")

x, y = float(coords[0]), float (coords[1])

• Of course, we still need to convert those strings into the corresponding numbers.

• Returning to our decoder, we can use a similar technique. Since, the sequence Unicode

numbers produced by Encoder program has space between each numbers, the default split

command will work.

>>> "87 104 97 1 16 32 97 32 83 1 1 1 1 17 1 14 1 12 1 17 1 15 1 15 33".split()

['87','104','97','116','32','97','32','83','111','117','114', '112', '117',

'115', '115', '33']

print ("This program converts a sequence of Unicode numbers into ")

print ("the string of text that it represents . \n")

Get the message to encode

inString = input ("Please enter the Unicode-encoded message : ")

Loop through each substring and build Unicode message

message = " "

for numStr in inString . split () :

codeNum = int (numStr) # convert digits to a number

message = message + chr (codeNum) # concatentate character to message

print (" \nThe decoded message is : ", message)

• Of course, we still need to convert those strings into the corresponding numbers.

• Output of the program:

More String Methods

• Python is a very good language for writing programs that manipulate textual data. Table 5.2

lists some other useful string methods.

• Let’s use these methods.

>>> s="hello, I came here for an argument"

>>> s.capitalize()

'Hello, i came here for an argument'

>>> s.title ()

'Hello, I Came Here For An Argument'

>>> s.lower()

'hello, i came here for an argument'

>>> s.upper ()

'HELLO, I CAME HERE FOR AN ARGUMENT'

>>> s.replace ("I" , "you")

'hello, you came here for an argument'

>>> s.center (30)

'hello, I came here for an argument’

>>> s.center (50)

‘ hello , I came here for an argument’

>>> s.count('e')

5

>>> s.find(‘,’)

5

>>>" ".join(["Number" , "one ," , "the" ,

"Larch"])

'Number one , the Larch'

>>> "spam" . join(["Number" , "one ,","the "

, "Larch"])

'Numberspamone , spamthespamLarch'

• Like strings, lists are also objects and come with their own set of "extra" operations.

• The append method can be used to add an item at the end of a list. This is often used to

build a list one item at a time.

• Here's a fragment of code that creates a list of the squares of the first 100 natural numbers:

squares = []

for x in range (1 , 101) :

squares . append(x*x)

def main() :

print ("This program converts a sequence of Unicode numbers into ")

print ("the string of text that it represents . \n")

Get the message to encode

inString = input ("Please enter the Unicode-encoded message : ")

Loop through each substring and build Unicode message

chars = []

for numStr in inString.split () :

codeNum = int (numStr)

chars.append(chr(codeNum))

message = "".join(chars)

convert digits to a number

accumulate new character

print (" \nThe decoded message is : " , message)

main ()

• With the append method in hand, we can go back and look at an alternative approach to our

little decoder program.

Modular Programming: By including def

main (), the program codes will be run

when the program is called. Otherwise, the

codes will always run when it is imported

to another sub program.

The final message is obtained by joining these characters together using an empty string as the

separator.

So, the original characters are concatenated together without any extra spaces between.

Input/Output as String Manipulation

• For example, consider a program that does financial analysis. Some of the information (e.g.,

dates) must be entered as strings.

• The results of the analysis will typically be a nicely formatted report including textual

information that is used to label and explain numbers, charts, tables, and figures.

Example Application: Date Conversion

• As a concrete example, let's extend our month abbreviation program to do date conversions.

The user will input a date such as "24/02/2025," and the program will display the date as

"February 24, 2025."

Input the date in dd/mm/yyyy format (dateStr)

Split dateStr into day, month and year strings

Convert the month string into a month number

Use the month number to look up the month name

Create a new date string in form Month Day , Year

Output the new date string

• Here is the program:

dateStr = input ("Enter a date (dd/mm/yyyy) : ")

dayStr,monthStr,yearStr = dateStr.split ("/")

months=["January","February","March","April","May","June",

 "July","August","September","October","November","December"]

monthStr = months [int (monthStr)-1]

print("The converted date is:" , monthStr, dayStr + ",",yearStr)

• When run, the output looks like this:

• We now have a complete set of operations for

converting values among various Python data

types. Table 5.3 summarizes these four Python

type conversion functions:

String Formatting (f-string method)

• The reason to converting numbers into string is to output the results nicely. Python provides a

powerful string formatting operation that makes the job much easier.

• Let's start with a simple example.

>>>name = "Ali"

>>>print(f"Hello, {name}!")

Hello, Ali!

>>>name = "Ali"

>>>age= 25

>>>print(f"{name} is {age} years old.")

Ali is 25 years old.

• f shows the string given includes string formating.

Additionaly, variables can be used in the curly

braces {}.

>>> pi = 3.14159

>>>print(f"Pi number is {pi:.2f}")

Pi number is 3.14

String Formatting (.format() method)

• This method uses curly braces ({})as placeholders (slots).

The width specifies how many

"spaces" the value should take

up. Putting a 0 here essentially

says "use as much space as you

need."

>>> total = 12.3456

>>>print("The total value of your change is ${0:0.2f}".}".format(total))

The total value of your change is $12.35

0 . 2 f

The precision is 2, which tells Python to

round the value to two decimal places.

The type character f says the value

should be displayed as a fixed-point

number.

>>> "Hello {0} {1}, you may have won ${2}".format("Mr.", "Smith", 10000)

'Hello Mr. Smith, you may have won $10000’

>>>item = "notebook"

>>>quantity = 3

>>>price = 12.5

>>>print("You bought {0} {1}(s) for ${2:.2f} each.".format(quantity, item, price))

You bought 3 notebook(s) for $12.50 each.

• Often, you'll want to control the width and/or precision of a numeric value.

>>> "This int, {0:5}, was placed in a field of width 5".format(7)

'This int, 7, was placed in a field of width 5’

>>> "This int, {0:10}, was placed in a field of width 10".format(7)

'This int, 7, was placed in a field of width 10’

>>> "This float, {0:10.5}, has width 10 and precision 5".format(3.1415926)

'This float, 3.1416, has width 10 and precision 5’

>>> "This float, {0:10.5f}, is fixed at 5 decimal places".format(3.1415926)

'This float, 3.14159, is fixed at 5 decimal places’

>>> "This float, {0:0.5}, has width 0 and precision 5".format(3.1415926)

'This float, 3.1416, has width 0 and precision 5’

>>> "Compare {0} and {0:0.20}".format(3.14)

'Compare 3.14 and 3.1400000000000001243'

Notice that for normal (not fixed-point) floating-point

numbers, the precision specifies the number of significant

digits to print.

For fixed-point (indicated by the f at the end of the specifier)

the precision gives the number of decimal places.

>>>"{:<10}".format("hi") # right aligned

>>>"{:^10}".format("hi") # centered

>>>"{:>10}".format("hi") # left aligned

• You may notice that, by default, numeric values are right -justified. This is helpful for lining up

numbers in columns.

• Strings, on the other hand, are left -justified in their fields.

• You can change the default behaviors by including an explicit justification character at the beginning

of the format specifier.

>>>text = "Python"

>>>print(f"{text:<10}") # left aligned

>>>print(f"{text:^10}") # centered

>>>print(f"{text:>10}") # right aligned

Next Lecture
File Processing

	Slayt 1: Introduction to Python Language
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33
	Slayt 34: Next Lecture

