ME 209
Numerical Methods

6. Interpolation Methods 1

Assoc. Prof. Dr. Nurettin Furkan DOGAN

Mechanical Engineering Department

Gaziantep University



® Motivation: T p A Y

® Often we have discrete data (tabulated, ____If _____ ]f(iiri_____W_/_(_m__Ii)____N__S_/_m_z__
from experiments, etc) that we need to 100 3.5562 0.0093 7.110e-06
interpolate. 150 2.3364 0.0138 1.034e-05
® |nterpolating functions form the basis for 200 1.7458 0.0181 1.325e-05
250 1.3947 0.0223 1.596e-05

numerical integration and differentiation 300 1.1614 0.0263 1.846e-05
techniques 350 0.9950 0.0300 2.082e-05
® Used for solving ODEs & PDEs 400 0.8711 0.0338  2.301e-05

o we will cover this later 450 0.7750 0.0373 2.507e-05
500 0.6864 0.0407 2.701e-05

® Concept: 550 0.6329 0.0439  2.884e-05
. . . 600 0.5804 0.0469 3.058e-05

® Choose a polynomial function to fit to the 50 0. 5356 0.0497  3.2256_05
data (connect the dots) 700 0.4975 0.0524  3.388e-05
® Solve for the coefficients of the polynomial 750 0.4643 0.0549  3.546e-05
® Evaluate the polynomial wherever you 800 0.4354 0.0573 3.698e-05
850 0.4097 0.0596 3.843e-05

want (interpolation) 900 0.3868 0.0620 3.981e-05
950 0.3666 0.0643 4.113e-05

1000 0.3482 0.0667 4.244e-05

Incropera & DeWitt, Fundamentals of Heat and Mass Transfer, 4th ed.
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INTRODUCTION

Interpolation is a method of estimating the intermediate values between precise data
points. The most common method used for this purpose is polynomial interpolation.
The basis of all interpolation algorithms is the fitting of some type of curve or function
to a subset of the tabular data.

Thus, we first fit a function that exactly passes through the given data points and than

evaluate intermediate values using this function.

& Iy &

a) first-order (linear) connecting two
points,

b) second-order (quadratic or
parabolic) connecting three
points, and

c) third-order (cubic) connecting

- - - four points.

(a) (b) (c)




NEWTON'S DIVIDED-DIFFERENCE
INTERPOLATING POLYNOMIALS

There are a variety of alternative forms for expressing an interpolating polynomial.
Newton’s divided-difference interpolating polynomial is among the most popular
and useful forms. Before presenting the general equation, we will introduce the

first- and second-order versions



Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line.
This technique, called linear interpolation,

f(x) 4

f(ﬂ)

fi(x)

Slxp)

r

From similar triangles,

J1(x) — f(xp) :f(xl) — f(xo)

X — Xp X1 — Xp
linear- J(x1) — f(xo)
interpolation | f1(x) = f(xy) + (x — xp)
formula X1 = Xo

The slope of the line connecting the points, the term
[fix;) — fixg)V(x; — x,) is a finite-divided-difference
approximation of the first derivative



Linear Interpolation

Problem Statement. Estimate the natural logarithm of 2 using linear interpolation.
First, perform the computation by interpolating between In 1 = 0 and In 6 = 1.791759.
Then, repeat the procedure, but use a smaller interval from In 1 to In 4 (1.386294). Note
that the true value of In 2 is 0.6931472.

Solution.  We use Eq. (18.2) and a linear interpolation for In 2 from x5 = 1 to x; = 6
to give
1.791759 — 0O

fi2) =0+ o (2 — 1) = 0.3583519

which represents an error of ¢, = 48.3%. Using the smaller interval from xo =1 to x; = 4
yields
1.386294 — 0

fi2) =0+ i (2 — 1) = 0.4620981

Thus, using the shorter interval reduces the percent relative error to € = 33.3%. Both



f(x)

True

fx)=Inx

fl(-x)

Linear estimates

]



Quadratic Interpolation

If three data points are available to find desired point, this can be accomplished with a
second-order polynomial (also called a quadratic polynomial, or a parabola).

Y2 = f(X3)

y1 = f(x4)

Yo = f(Xo)

: * Given: (XOI YO) /4 (Xll Y1) and (XZI YZ)
\ : « A parabola passes from these three points.

be + by x+ by,x2 ¢ Similar to the linear case, the equation of this
parabola can be written as

X Ja(x) = by + by(x — xp) + by(x — xp) (x — x7)

A simple procedure can be used to determine the values of the
coefficients. For b°, Eq. (18.3) with x = x% can be used to

compute



Quadratic Interpolation

fr(x) = by + bi(x — xp) + br(x — xp)(x — X})

A simple procedure can be used to determine the values of the coefficients.
For by, x = x° can be used to compute

by = f(xp)
at x = x, b, :f(x;) —J;(l’o)
1 — X0
J(x2) — f(xy) _f(xl) — f(xp)
Xy — X X1 — Xo
atX=X2 bzz

Xy — Xp



Quadratic Interpolation

Problem Statement. Fit a second-order polynomial to the three points used in
Example 18.1:

Xo =1 J(xo) =0
xy=4  f(x;) = 1.386294
Xy = 6 f(Xz) = 1791759

Use the polynomial to evaluate In 2.



Solution. Applying Eq. (18.4) yields

bg — 0
Equation (18.5) yields
~ 1.386294 - 0

- = 0.4620981
! 4 —1 7

and Eq. (18.6) gives

1.791759 — 1.386294
2 z A ’ — 0.4620981

b,y = — —0.0518731
2 6 — 1

H(x) =0+ 0.4620981(x — 1) — 0.0518731(x — 1)(x — 4)
which can be evaluated at x = 2 to give

£(2) = 0.5658444

which represents a relative error of & = 18.4%.



General Form of Newton’s Interpolating Polynomials

The preceding analysis can be generalized to fit an nth-order polynomial to n + 1 data
points. The nth-order polynomial is

Jo(x) = by + by(x — xp) + -+ + by(x — xp) (x — xy) -+ (x — Xp_1)

by = f(xo)
by = flx1, xo]

by = fx2, x1, Xo]

where the bracketed function evaluations are
b, =[x, Xu_1, .., X1, Xo] finite divided differences.



J(x) = f(x))

)C,;—)Cj

first finite divided difference flxi, xi] =

S, xj] - f[xj, X ]

Xi — Xk

second finite divided difference  f[x;, xj, x;] =

nth finite divided difference

f[xm Xn—1s «-- 9xl] _f[xn—laxn—Za

S Xp_1s oon s X1, Xo] = X, — Xo

These differences can be used to evaluate the coefficients b



Newton'’s divided-difference interpolating polynomial.

Jo(x) = f(xo) + (x = x0)f[x1, X0l + (x — x0) (x — x1)f [ X2, X1, X0]

+ o+ (= x)(x = x1) 0 (0 = XD [ Xty <+ 5 X0l

Graphical depiction of the recursive nature of finite divided differences.

i X; f(x;) First Second Third
X0 f(xo) > flxy, Xo] > f[xa, X1, Xo] > f[x3, X2, X1, Xo]
Xi f(xi) ///; flx2, xi] //’: fIxs, X2, Xq] —

wWN = O

\

> Moo 0] —

X

= =
XX
DO



Problem Statement. data points at x, = 1, x; = 4, and x, = 6 were
used to estimate In 2 with a parabola. Now, adding a fourth point, [x3 = 5; f(x3) = 1.609438],
estimate In 2 with a third-order Newton’s interpolating polynomial.

Solution. The third-order polynomial, with n = 3, 1s
J3(x) = by + by(x — x0) + ba(x — xo) (x — x1) + D3(x — X)) (x — x1)(x — x)
The first finite divided differences for the problem are

1.386294 — 0

f[;fl, XU] = = 0.4620981
41
1.791759 — 1.386294
Flxg x,] = = 0.2027326
6 — 4
1.609438 — 1.791759
Flxs, x,] = = 0.1823216

5-6



The second finite divided differences are

0.2027326 — 0.4620981

Jlx2, x1, X0] = 6_ 1 = —0.05187311
0.1823216 — 0.2027326
f[x3, X2, xl] — = —0.02041100
5-4
The third finite divided difference is with n = 3]
—0.02041100 — (—0.05187311)
f[x?,, X2, X1, )Co] — 5 1 = 0.007865529

The results for f[x;, xol, f[x2, X1, Xol, and f[x3, x», X1, Xo] represent the coefficients b, b,,
and b5, respectively . With by = f(xy) = 0.0,

f3(x) =04+ 0.4620981(x — 1) — 0.05187311(x — 1)(x — 4)
+ 0.007865529(x — 1)(x — 4)(x — 6)

which can be used to evaluate f3(2) = 0.6287686, which represents a relative error of
g = 9.3%.



J(x)

: ol

True
value

®-<— Cubic

estimate




The following logarithmic table is given.

X | f(x)=log(x)
4.0 0.60206
4.5 | 0.6532125
5.5 | 0.7403627
6.0 | 0.7781513

(a) Interpolate log(5) using the points x=4 and x=6
(b) Interpolate log(5) using the points x=4.5 and x=5.5

Note that the exact value is log(5) = 0.69897

(a) Linear interpolation. f(x) = f(Xg) + (X - Xo) f[X1, Xo]
Xo=4, Xy =6 — f[xq, Xo] = [f(6) —f(4)] / (6 - 4) = 0.0880046
f(5) = f(4) + (5 -4) 0.0880046 = 0.690106 & = 1.27 %

(b) Again linear interpolation. But this time
Xo =4.5, Xy =55 — f[xq, Xo] = [f(5.5) —f(4.5)] / (5.5 -4.5) = 0.0871502
f(5) =~ f(4.5) + (5 -4.5) 0.0871502 = 0.696788 & = 0.3 %



(c) Interpolate log(5) using the points x=4.5, x=5.5 and x=6

(c) Quadratic interpolation.
Xo = 4.5, Xy =5.5,X%X, =6 > f[Xq, Xg] = 0.0871502 (already calculated)
f[x5, X4] = [f(6) — f(5.5)] / (6 = 5.5) = 0.0755772
f[X5, X1, Xo] = {f[X2, X1] - f[X1, X0} / (6 —4.5) = -0.0077153
f(5) ~ 0.696788 + (5 - 4.5)(5 - 5.5) (-0.0077153) = 0.698717 & =0.04 %

e Note that 0.696788 was calculate in part (b).
e Errors decrease when the points used are closer to the interpolated point.

e Errors decrease as the degree of the interpolating polynomial increases.



Finite Divided Difference (FDD) Table

Finite divided differences used in the Newton’s Interpolating Polynomials can be
presented in a table form. This makes the calculations much simpler.




f() fl, ] fl, ] fl,, ]
0.6020600 0.1023050 -0.0101032 0.001194
4.5 0.6532125 0.0871502 -0.0077153
5.5 0.7403627 0.0755772
6 0.7781513

Use this previously calculated table to interpolate for log(5).

(a) Using points x=4 and x=4.5.

(b) Using points x=4.5 and x=5.5.

(c) Using points x=4 and x=6.

(d) Using points x=4.5, x=5.5 and x=6.

(e) Using all four points.




(a) Using points x=4 and x=4.5.
log (5) ~ 0.60206 + (5 -4) 0.102305 = 0.704365 & =0.8% (this is extrapolation)
(b) Using points x=4.5 and x=5.5.

log (5) ~ 0.6532125 + (5 - 4.5) 0.0871502 = 0.696788 & = 0.3 %
(c) Using points x=4 and x=6.
The entries of the above table can not be used for this interpolation.
(d) Using points x=4.5 , x=5.5 and x=6.
log (5) ~ 0.6532125 + (5-4.5) 0.0871502 + (5-4.5)(5-5.5)(-0.0077153)= 0.698717 &, = 0.04 %

(e) Using all four points.

log (5) ~ 0.60206 + (5 - 4) 0.102305 + (5 - 4)(5 - 4.5)(-0.0101032)
+ (5 - 4)(5 - 4.5)(5 — 5.5)(0.001194) = 0.6990149 ¢, = 0.006 %



Errors of Newton’s Interpolating Polynomials
fa(X) = f(Xo) + (X-Xo) fIxy, Xo] + (X-Xo)(X - Xq) f[Xa, X3, Xo] +
+ (X X)(X - Xq) -+ (X = Xp-1) f[Xns Xn-1s + v X1/ Xo]
e The structure of Newton’s Interpolating Polynomials is similar to the Taylor series.

) |yt

e Remainder (truncation error) for the Taylor series was R, = (s 1)

e Similarly the remainder for the nth order interpolating polynomial is

_ fn+1(§)
" (n+ 1)

(x-xo)(x-x3)...(x-Xxy)

where & is somewhere in the interval containing the interpolated point x and other data points.
e But usually only the set of data points is given and the function f is not known.
e An alternative formulation uses a finite divided difference to approximate the (n+1)th derivative.
R, = f[X, X3y Xp_g r===r Xol (X — X )(X —X4)...(X—X,)
e But this includes f(x) which is not known.
e Error can be predicted if an additional data point (x,,) is availbale
Rn ~ f[Xni1/ Xns/ Xpg 7200y Xo] (X=X )(X = X1) ... (X = Xp)

which is nothing but f,(x) - f,(X)



LAGRANGE INTERPOLATING POLYNOMIALS

The Lagrange interpolating polynomial is simply a reformulation of the Newton
polynomial that avoids the computation of divided differences. It can be represented
concisely as

£,(0) = D Li(x)f(x)
=0

where Langrange function is:
n

X — X;
Li(x) = H !
IZVX — X;

J#1

and I designates the “product of.”



For example, the linear version (n = 1) is

- X — Xq X — X
Jilx) = o — xlf(x'o) A xﬂf(xl)
and the second-order version is
- (x = x)(x — 1) (x = Xo) (x — x2)
S0 = (X0 — x1)(xp — Xx7) ) + (X1 — Xx0) (X1 — Xxp) )

(x — x0)(x — x1)

(X2 — x0) (X2 — x1)

Jf(xz)



Problem Statement. Use a Lagrange interpolating polynomial of the first and second
order to evaluate In 2 on the basis of the data given in Example 18.2:

Xo =1 f(xp) =0
x =4 f(x;) = 1.386294
X, =6 f(xp,) =1.791760

Solution. The first-order polynomial [Eq. (18.22)] can be used to obtain the estimate
at x = 2,

) =204 2
DT o4 T4

1.386294 = 0.4620981

In a similar fashion, the second-order polynomial is developed as [Eq. (18.23)]

2-9H2-6) (2-D(2-6)
A = 06t @ 38629
2-1)(2-4)

T 6= 16 =4

1.791760 = 0.5658444

As expected, both these results agree with those previously obtained using Newton’s
interpolating polynomial.



SPLINE INTERPOLATION

* We learned how to interpolate between n+1 data points using nth order polynomials.
 For high number of data points (typically n > 6 or 7), high order polynomials are
necessary, but sometimes they suffer from oscillatory behavior.

, actual function . 4
. e
interpolation /./‘*. //\J

* Instead of using a single high order polynomial that passes through all data points, we

can use different lower order polynomials between each data pair.
 These lower order polynomials that pass through only two points are called splines.

* Third order (cubic) splines are the most preferred ones.

first order splines : ;




Linear Splines

f) 4

The notation used for splines

§,(x) 5:(x) S._1(x)
I
f;r—l
f ) .
- I
‘#

fi --. ,f;’ -f;-‘l‘l "" : :

: -.---h :_“- : :

! | i ] ]
|

! : : : : I

’ | : : : :

| | | I 1 I

' Interval ! . Interval ! ! Interval |

: 1 : : l : on—=1 |

(- >, I >~ - -

! I ! I 1 1

| : : | : :

! | ! 1 1 1

X X2 i Xit1 Xn—1 An

=Y



Linear Splines

e For ndata points(i=1,2,...,n), there are n — 1 intervals. Each interval i has its
own spline function, s,(x).

* For linear splines, each function is merely the straight line connecting the two
points at each end of the interval, which is formulated as

s;(x) = a; + bi(x — x;)

where g; is the intercept, which is defined as a,= f;, = f (x;)

and b, is the slope of the straight line connecting the points b = Jiv1 — fi
Xit1 — X
Jiv1 — i
Sf(x) =f; + (_x — )Cf)
Xit1 — A

These equations can be used to evaluate the function at any point between x; and x,
by first locating the interval within which the point lies.



Problem Statement. Fit the data in Table 18.1 with first-order splines. Evaluate the
function at x = 5.

TABLE 181 Data to be fit with spline functions.

i Xi fi
1 3.0 2.5
2 4.5 1.0
3 7.0 2.5
4 9.0 0.5



Solution.
For example, for the second interval from x = 4.5 to x = 7, the function is

(0 =10+ 22722 45
AR TG

()—10+2‘5_1'O(5 45) =123
2 = T 0 — 45 D) =2
Jx) 4

First-order

B spline

2_

0 p—




Quadratic Splines

* To ensure that the nth derivatives are continuous at the knots, a spline of at least
n + 1 order must be used.

* Third-order polynomials or cubic splines that ensure continuous first and second
derivatives are most frequently used in practice.

 The objective in quadratic splines is to derive a second-order polynomial for each
interval between data points.

si(x) = a; + bi(x — x;) + c;(x — X.i)z

For n data points (i=1, 2, ..., n), there are n - 1 intervals and, consequently, 3(n - 1)
unknown constants (the ad’s, b’s, and c’s) to evaluate. Therefore, 3(n - 1) equations or
conditions are required to evaluate the unknowns.



. The function must pass through all the points. This is called a continuity condition.
It can be expressed mathematically as

fi=a;+ bi(x; — x) + ¢;(x; — x;)°
which simplifies to

5i (%) = fi + bi(x — x;) + ¢;(x — x;)°

. The function values of adjacent polynomials must be equal at the knots.

2
fi + bihi + cihi = fii hi = Xiy1 — X

. The first derivatives at the interior nodes must be equal.
si(x) = b; + 2¢,(x — Xx;) b, + 2cih; = b,

. Assume that the second derivative is zero at the first point. ci=0



Problem Statement. Fit quadratic splines to the same data employed in previous
example (Table 18.1). Use the results to estimate the value of the function at x = 5.

TABLE 181 Data to be fit with spline functions.

i Xi f;

1 3.0 2.5
2 4.5 1.0
3 7.0 2.5
4 9.0 0.5




Solution. For the present problem, we have four data points and n» = 3 intervals. There-
fore, after applying the continuity condition and the zero second-derivative condition.
this means that 2(4 — 1) — 1 = 5 conditions are required. Equation (18.34) is written
for i = 1 through 3 (with ¢; = 0) to give

fi + bihy = 1
fr + bohy + C2h2 =/
f3 + bshs + C’3h% = J4

Continuity of derivatives, Eq. (18.35), creates an additional 3 — 1 = 2 conditions (again,
recall that ¢, = 0):

b] —_ bz
b2 + 262}’12 = b3



The necessary function and interval width values are

fi=25 hy=45-30=15
=10 h,=70—-45=25
=125 h; =9.0 —7.0=20
Ja=105

These values can be substituted into the conditions, which can be expressed in matrix form as

1.5 0 0 0 0] (b1 [—15)
0 25 625 0 O b, 1.5
0 0 0 2 4f[¢cp={ -2}
1 —1 0 0 O b; 0
Lo 1 5 -1 0l\e/) \ 0O )
These equations can be solved with the results:
b, = —1
b, = —1 c, = 0.64

b3 = 2.2 Cy = —16



These results, along with the values for the a’s [Eq. (18.32)], can be substituted into the
original quadratic equations to develop the following quadratic splines for each interval:

si(x) =25 - (x = 3)
sH(x) = 1.0 — (x — 4.5) + 0.64(x — 4.5)°
s3(x) = 2.5 + 2.2(x — 7.0) — 1.6(x — 7.0)°
Because x = 5 lies in the second interval, we use s, to make the prediction,

55(5) = 1.0 — (5 — 4.5) + 0.64(5 — 4.5)*> = 0.66



Cubic Splines

* Cubic splines are most frequently used in practice.

e Cubic splines are preferred because they provide the simplest representation that
exhibits the desired appearance of smoothness.

* The objective with cubic splines is to derive a third-order polynomial for each
interval between knots as represented generally by

s(x) = a; + b;(x — x) + ¢;(x — x)" + di(x — x)°

Thus, for n data points (i =1, 2, ..., n), there are n - 1 intervals and 4(n - 1)
unknown coefficients to evaluate.
Consequently, 4(n - 1) conditions are required for their evaluation.



The final equations can now be written in matrix form as

1
hy Z(hl + h::)

hhhn_z

hi = Xiy1 — X;

fi-f

Sxi, x;] =

X; — X

2(hn 2+hn 1) hn 1

([ C1

\

0
3(f[x3 x,] . J [, x11)

%(f[ Xns Xp— l] _
0

f[-xn—l! -xn—E])

)



Problem Statement. Fit cubic splines to the same data used in previous examples
(Table 18.1). Utilize the results to estimate the value of the function at x = 5.

TABLE 181 Data to be fit with spline functions.

i Xi f;

1 3.0 2.5
2 4.5 1.0
3 7.0 2.5
4 9.0 0.5




Solution. The first step is to generate the set of simultaneous equations that will be
utilized to determine the c coefficients:

C 1 1 (¢ 0
hy 2(hy + hy) h» < cr | ) 3(f[x3, x2] = flxp, x1])
h, 2(hy + h3)  hy oy [ 3(f x4 x3] = fx3, X2])

L 1] \¢ 0

The necessary function and interval width values are

= 1L0 hy =70 —45 =25
fr=25 hy =90 —-70=20

fa=05



[ 1 T Cl\ 0 )
15 8 25 o\ 4.8 >
25 9 2| Yo )-48
] 1] \C4) 0
C = 0 Cyr = 0839543726

Cy = —0766539924 Cy = 0

Compute the b’s and d’s:

b, = —1.419771863 d; = 0.186565272
b, = —0.160456274 d, = —0.214144487
b; = 0.022053232 dy; = 0.127756654




si(x) = 2.5 — 1.419771863(x — 3) + 0.186565272(x — 3)°

5,(x) = 1.0 — 0.160456274(x — 4.5) + 0.839543726(x — 4.5)°
— 0.214144487(x — 4.5)°

s3(x) = 2.5 + 0.022053232(x — 7.0) — 0.766539924(x — 7.0)*
+ 0.127756654(x — 7.0)

The three equations can then be employed to compute values within each interval. For
example, the value at x = 5, which falls within the second interval, is calculated as

55(5) = 1.0 — 0.160456274(5 — 4.5) + 0.839543726(5 — 4.5)* — 0.214144487(5 — 4.5)°
= 1.102889734.
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