
MATRIX OPERATIONS

CHAPTER - 4



Vectors and Matrices

The row vectors:

The row vectors are entities enclosed in pair of square-brakets with

numbers seperated either by spaces or by commas. For example, enter

two vectors Z and Y as:

>> Z = [2,4,6,8] 

Z =2     4     6     8

>> Y = [4 -3 5 -2]

Y =4    -3     5    -2 

2



Adding Two Row Matrices:

Z = [2 4 6 8] 

Y = [4 -3 5 -2]

>>X=Z+Y

It creates new row matrix

X= 

6    1     11    6

3

Combination of vectors to form another vector:

W =[Z,Y]

W=

2     4     6     8     4    -3     5    -2



The linear combination of Z and Y:

>> C=4*Z+6*Y

C =32    -2    54    20

4

Application of Build in functions and some command to row Matrix:

sort(W)

ans = -3    -2     2     4     4     5     6     8

min(W)

ans =-3

max(W)

ans =8



sin(sum(W))

ans =-0.9056

mean(W)

ans =3

sum(W)

ans =24

5

log(W)

ans =

Columns 1 through 3

0.6931             1.3863             1.7918          

Columns 4 through 6

2.0794             1.3863             1.0986 + 3.1416i

Columns 7 through 8

1.6094             0.6931 + 3.1416i



rand
ans =

0.4326

randn
ans =

0.1253

Rand: Generates an array with elements randomly chosen from the uniform
distribution over the interval [0, 1]

Randn: Generates an array with elements randomly chosen from the normal
distribution function with zero mean and standard deviation 1.

6



>> A=[2;3;1],B=[4;6;5], C=A+B

A =

2

3

1

B =

4

6

5

C =

6

9

6
7

Column Vectors

The column vectors in matlab are formed by using a set of numbers in a

pair of square brackets and seperating them with semi-colon. Therefore, one

can define two column vectors A and B and add them as below:



Index notation: 

>> X = [1:9]

X =

1     2     3     4     5     6     7     8     9

Or you may not use [ ] notation

>> X = 1:9

X =

1     2     3     4     5     6     7     8     9

In this example the increment is not given, in this case matlab 

default  value is “1” so matlab understands that the increment is 

one.
8



Example :

>> X = 0:2:10

X =

0     2     4     6     8    10

In this example, the increment is specified as ‘2’.

Note that in some cases, the upper limit may not be attainable thing. 

For example;

>> D= 1:0.3:3

D =

1.0000    1.3000    1.6000    1.9000    2.2000    2.5000    2.8000 

Example;

>> 1:-1:5

ans =

Empty matrix: 1-by-0

>> 5:-1:1

ans =

5     4     3     2     1 9



Sections of a Vector:

Let us define a vector using the range notation:

>> W=[1:3,7:9]

W =

1     2     3     7     8     9

Now we would like to extract the middle of two elements of

this vector. This can be done with the range notation again. As

you can see, the middle two elements are 3:4 range. Therefore,

the required part of vector can be obtained as:

>> W(3:4)

ans =

3     7
10



For example;  6:-1:1 is the desending range and when used 

with part extraction of vector, it gives:

>> W(6:-1:1)

ans =

9     8     7     3     2     1

Thus by this way we sorted vector numbers from bigger to 

smaller values.

>>  H=1:2:19

H =

1     3     5     7     9    11    13    15    17    19

>>  H(3:2:8)

ans =

5     9    13

11



Example

>> M=[3,2,7]; N =[6,8,9]; M+N , M-N , M*N

ans =
9    10    16

ans =
-3    -6    -2

??? Error using ==> mtimes

Inner matrix dimensions must agree

As we can see, M+N and M-N are calculated but M*N can not be calculated.

Because the summation and substraction can be performed when the marix

dimensions are the same. For example, 3x3 matrix can be sum or substract by

only 3x3 matrix. But in multiplication, the number of first vector column must be

equal to the number of second vector row. For example, (2x3) by (3x1) this

results 2x1 vector as shown below.

12



>> M=[3,2,7;2,3,4],  N =[6;8;9],  M*N

M =

3     2     7

2     3     4

N =

6

8

9

ans =

97

72

13



If you don’t want M an N be seen in the window , we can write by

using semicolon instead of comma:

>>  M=[3,2,7;2,3,4]; N =[6;8;9];M*N

ans =

97

72

14



Transpose

We can convert a column vector into a row vector (and vice versa) 

by a process called transposing denoted by ‘ (single quote).

>> c = [ 1; 3; sqrt(5)],c‘

c =

1.0000

3.0000

2.2361

ans =

1.0000    3.0000    2.2361

15



>> w= [3 -5 9], c = [ 1; 3; sqrt(5)],t = w + 2*c'

w =

3    -5     9

c =

1.0000

3.0000

2.2361

t =

5.0000    1.0000   13.4721

>> T = 5*w'-2*c

T =

13.0000

-31.0000

40.5279

16



If  x is a complex vector, then x' gives the complex conjugate 

transpose of x:

>> x = [1+3i, 2-2i], x’

x =

1.0000 + 3.0000i   2.0000 - 2.0000i

ans =

1.0000 - 3.0000i

2.0000 + 2.0000i

Example :

>> A=[1,3,6;2,7,8;0,3,9]

Then the output appears in the next line as shown below.

17



A =

1 3 6

2 7 8

0 3 9

Thus, a matrix is entered row by row, and each row is separated

by the semicolon(;). Within each row, elements are separated by a

space or a comma(,). Commands and variables used in Matlab are

case-sensitive. That is, lower case letters are distinguished from upper

case letters. The size of the matrix is checked with

>> size(A)

ans =3 3

>> A‘

ans =

1 2 0

3 7 3

6 8 9
18



Length Length of vector or largest array dimension

Max Largest elements in array

Min Smallest elements in array

Size Array dimensions

Eye Identity matrix

Zeros Create array of all zeros

Cross Vector cross product

Dot Vector dot product

Sum Sum of array elements

Sort Sort array elements in ascending or descending order

Det Matrix determinant

Rank Rank of matrix

Inv Matrix inverse

Eig Eigenvalues and eigenvectors

Sqrtm Matrix square root

Expm Matrix exponential

Logm Matrix logarithm

Arrays and Matrices, Basic Information

19



Dot product (dot)

C = dot(A,B)

C = dot(A,B,dim)

C = dot(A,B) returns the scalar product of the vectors A and B. A and B

must be vectors of the same length. When A and B are both column vectors,

dot(A,B) is the same as A’*B.

For multidimensional arrays A and B, dot returns the scalar product

along the first non-singleton dimension of A and B. A and B must have the

same size.

20



C = dot(A,B)

C(:,:,1) =

26    37   174

C(:,:,2) =

91    50   101

C(:,:,3) =

39    75   101

21

Definition: Let a and b be two vectors in
Rn, then the dot product of a and b is the
scalar a · b given by

a · b = a1b1 + a2b2 + a3b3 + · · · + anbn

C = dot(A,B,dim) returns the scalar product of 

A and B in the dimension dim.



C = dot(A,B)

C(:,:,1) =

26    37   174

C(:,:,2) =

91    50   101

C(:,:,3) =

39    75   101

22



C = dot(A,B,3)
5     1     2-------from A
2     1     5-------from B

+ ___________________
10+1+10=21

7    0     1
3    3     2     

+__________
21+0+2=23

8     4      4
6     4      4 

+__________
48+16+16=80

C =
21    23    80
18    66   144

117    73   152

23



Product of array elements(prod)

D = prod(A)

D = prod(A,dim)

D = prod(A) returns the products along different dimensions of an array.

If A is a vector, prod(A) returns the product of  the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning a

row vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the first

non-singleton dimension as vectors, returning an array of row vectors.

D = prod(A,dim) takes the products along the dimension of A specified by

scalar dim.

24



A=

C = prod(A)

5*0*4   7*1*3   8*9*6      
___________________

C=[   0        21        432]

5     7     8
0     1     9
4     3     6



Vector cross product(cross)

C = cross(A,B)

C = cross(A,B,dim)

C = cross(A,B) returns the cross product of the vectors A and B. That

is, C = A x B. A and B must be 3-element vectors. If A and B are

multidimensional arrays, cross returns the cross product of A and B along

the first dimension of length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays,

returns the cross product of A and B in dimension dim. A and B must have

the same size, and both size(A,dim) and size(B,dim) must be 3.

26



Example

The cross product of two vectors are calculated as shown:

>> a = [1 2 3]; 

b = [4 5 6];

c = cross(a,b) 

c =

-3     6    -3

c = cross(b,a) 

27

Definition: If a = ha1, a2, a3i and b =
hb1, b2, b3i, then the cross product of a and
b is the vector

a × b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)

NOTE: The cross product is only defined for
vectors in 𝑅3.



Matrix determinant(det)

d = det(X)

d = det(X) returns the determinant of the square matrix X. If X 

contains only integer entries, the result d is also an integer.

28



The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case where the matrix entries are written out in full, the determinant is denoted

by surrounding the matrix entries by vertical bars instead of the brackets or

parentheses of the matrix. For instance, the determinant of the matrix

is written

and has the value



Examples

•The statement A = [1 2 3; 4 5 6; 7 8 9]

Produces

A =

1       2       3

4       5       6

7       8       9

>> A = [1 2 3; 4 5 6; 7 8 9]; det(A)

ans =

0

This happens to be a singular matrix, so d = det(A) produces d = 0. 

Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now d = det(A) 

produces  d = 27.

•The statement  B = [1 7 -5; 4 -3 6; -1 8 9]; det(B)    

Produces

>> B = [1 7 -5; 4 -3 6; -1 8 9]; det(B)

ans =

-514 30



Matrix inverse(inv)

Y = inv(X)

Y = inv(X) returns the inverse of the square matrix X. A warning

message is printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a

matrix. A frequent misuse of inv arises when solving the system of linear

equations Ax=b.

One way to solve this is with x = inv(A)*b. A better way, from both an

execution time and numerical accuracy standpoint, is to use the matrix

division operator x = A\b. This produces the solution using Gaussian

elimination, without forming the inverse.

31



















−

=

111

102

111

A

















− 100

010

001

    

111

102

111

















−

−−

101-

012-

001

    

020

120

111

















11-1

01/2-1

001

    

100

2/110

111

Example .Matrix Inverse Operation

We add -2 times of first row to second row and -1 times of first row to third row

Secos row is divided by -2 and we add the result with times 2 to third row. 

Firstly we create an added unit matrix.



We obtain inverse matrix of A. Left side is unit matrix. Right side is inverse matrix. (A-1)

















=−

11-1

1/2-01/2

1/2-11/2-

A 1

















11-1

1/2-01/2

1-10

    

100

010

011

















11-1

1/2-01/2

1/2-11/2-

    

100

010

001

We add -1/2 times of third row to second row and -1 times of third row to first row

We add -1 times of second row to first row



>> A = [1 2 3; 4 5 6]; B=inv(A)

??? Error using ➔ inv

Matrix must be square.

>> A = [1 2 3; 4 5 6; 3 4 2]; B=inv(A)

B =

-1.5556    0.8889   -0.3333

1.1111   -0.7778    0.6667

0.1111    0.2222   -0.3333

34



Sum of array elements(sum)

B = sum(A)

B = sum(A,dim)

B = sum(..., ‘double’)

B = sum(..., dim,’double’)

B = sum(..., ‘native’)

B = sum(..., dim,’native’)

B = sum(A) returns sums along different dimensions of an array.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a 

row vector of the sums of each column. 

If A is a multidimensional array, sum(A) treats the values along the 

first non-singleton dimension as vectors, returning an array of row vectors. 35



B = sum(A,dim) sums along the dimension of A specified by scalar 

dim. The dim input is an integer value from 1 to N, where N is the 

number of dimensions in A. Set dim to 1 to compute the sum of each 

column, 2 to sum rows, etc.

B = sum(..., ‘double’) and B = sum(..., dim,’double’) performs 

additions in double-precision and return an answer of type double, even 

if A has data type single or an integer data type. This is the default for 

integer data types.

B = sum(..., ‘native’) and B = sum(..., dim,’native’) performs 

additions in the native data type of A and return an answer of the same 

data type. This is the default for single and double.

Remarks:

sum(diag(X)) is the trace of X.
36



Examples

The magic square of order 3 is

M = magic(3) 

M = 

8    1    6

3    5    7

4    9    2

This is called a magic square because the sums of the elements in

each column are the same.

Sum(M) =

15    15    15

as are the sums of the elements in each row, obtained either by

transposing or using thedim argument. 37



•Transposing

sum(M’) = 

15    15    15

•Using the dim argument

sum(M,1)

ans =

15    15    15

38



Length of vector or largest array dimension(length)

numberOfElements = length(array)

Number Of Elements = length(array) finds the number of elements along the largest

dimension of an array. Array is an array of any matlab data type and any valid dimensions.

numberOfElements is a whole number of the matlab double class.

For non-empty arrays, number of elements is equivalent to max(size(array)). For

empty arrays, number of elements is zero.

Example

Create a 1-by-8 array X and use length to find the number of elements in the second

(largest) dimension:

X = [5, 3.4, 72, 28/4, 3.61, 17, 94,  89];

length(X)

ans = 8 39



Largest elements in array(max)

C = max(A)

C = max(A,B)

C = max(A,[],dim)

[C,I] = max(...)

C = max(A) returns the largest elements along different dimensions of an

array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row

vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first non-

singleton dimension as vectors, returning the maximum value of each vector.

40



C = max(A,B) returns an array the same size as A and B with the 

largest elements taken from A or B. The dimensions of A and B must 

match, or they may be scalar.

C = max(A,[],dim) returns the largest elements along the dimension 

of A specified by scalar dim. For example, max(A,[ ],1) produces the 

maximum values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and 

returns them in output vector I. If there are several identical maximum 

values, the index of the first one found is returned.

41



Smallest elements in array(min)

C = min(A)

C = min(A,B)

C = min(A,[],dim)

[C,I] = min(...)

C = min(A) returns the smallest elements along different dimensions of an 

array. 

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a row 

vector containing the minimum element from each column. 

If A is a multidimensional array, min operates along the first nonsingleton 

dimension. 
42



C = min(A,B) returns an array the same size as A and B with the smallest 

elements taken from A or B. The dimensions of A and B must match, or they may 

be scalar.

C = min(A,[],dim) returns the smallest elements along the dimension of A 

specified by scalar dim. For example, min(A,[],1) produces the minimum values 

along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and returns 

them in output vector I. If there are several identical minimum values, the index of 

the first one found is returned.

43



Average or mean value of array (mean)

M = mean(A)

M = mean(A,dim)

M = mean(A) returns the mean values of the elements along different 

dimensions of an array. 

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row 

vector of mean values. 

If A is a multidimensional array, mean(A) treats the values along the first 

non-singleton dimension as vectors, returning an array of mean values. 

M = mean(A,dim) returns the mean values for elements along the dimension 

of A specified by scalar dim. For matrices, mean(A,2) is a column vector containing 

the mean value of each row.
44



Examples

A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];

mean(A)

ans =

3.0000    4.5000    6.0000

mean(A,2) 

ans =

2.0000

4.0000

6.0000

6.0000

45



Median value of array(median) 

M = median(A)

M = median(A,dim)

M = median(A) returns the median values of the elements along different 

dimensions of an array. A should be of type single or double.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning a 

row vector of median values. 

If A is a multidimensional array, median(A) treats the values along the first 

nonsingleton dimension as vectors, returning an array of median values. 
46



M = median(A,dim) returns the median values for elements along 

the dimension of A specified by scalar dim.

Examples

A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8]

A =

1     2     4     4

3     4     6     6

5     6     8     8

5     6     8     8

median(A) 

ans =

4     5     7     7

median(A,2)

ans =

3

5

7

7 47



Identity matrix(eye)

Y = eye(n)

Y = eye(m,n)

Y = eye([m n])

Y = eye(size(A))

Y = eye(m, n, classname)

Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or Y = eye([m n]) returns an m-by-n matrix with 1's on the 

diagonal and 0's elsewhere. The size inputs m and n should be nonnegative integers. 

Negative integers are treated as 0. 

Y = eye(size(A)) returns an identity matrix the same size as A.

Y = eye(m, n, classname) is an m-by-n matrix with 1's of class classname on the

diagonal and zeros of class classname elsewhere. classname is a string specifying

the data type of the output. classname can take the following values: 'double',

'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32', 'int64', or 'uint64'.
48



The identity matrix is not defined for higher-dimensional arrays. 

The assignment y = eye([2,3,4]) results in an error.

Examples

Return a 3-by-5 matrix of class int8:

>> x = eye(3,5,'int8')

x =

1    0    0    0    0

0    1    0    0    0

0    0    1    0    0

49



Matrix square root(sqrtm)

X = sqrtm(A)

[X, resnorm] = sqrtm(A)

[X, alpha, condest] = sqrtm(A)

X = sqrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X is the unique square root for which every eigenvalue has nonnegative 

real part. If A has any eigenvalues with negative real parts then a complex 

result is produced. If A is singular then A may not have a square root. A 

warning is printed if exact singularity is detected.

50



Example

A matrix representation of the fourth difference operator is

X=[5 -4 1 0 0; -4 6 -4 1 0;1 -4 6 -4 1;0 1 -4 6 -4;0 0 1 -4 5]

X =

5    -4     1     0     0

-4     6    -4     1     0

1    -4     6    -4     1

0     1    -4     6    -4

0     0     1    -4     5

This matrix is symmetric and positive definite. Its unique positive definite square 

root, Y = sqrtm(X), is a representation of the second difference operator. 

Y =

2.0000   -1.0000    0.0000    0.0000    0.0000

-1.0000    2.0000   -1.0000    0.0000   -0.0000

0.0000   -1.0000    2.0000   -1.0000    0.0000

0.0000    0.0000   -1.0000    2.0000   -1.0000

0.0000   -0.0000    0.0000   -1.0000    2.0000 51



Matrix exponential (expm)

Y = expm(X)

Y = expm(X) computes the matrix exponential of X.

Although it is not computed this way, if X has a full set of eigenvectors V 

with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V

Examples

This example computes and compares the matrix exponential of A and the 

exponential of A.

52



A = [1        1        0

0        0        2

0        0       -1 ];

expm(A) 

ans = 

2.7183   1.7183        1.0862

0        1.0000        1.2642

0             0        0.3679

exp(A)

ans = 

2.7183        2.7183        1.0000

1.0000        1.0000        7.3891

1.0000        1.0000        0.3679

Notice that the diagonal elements of the two results are equal. 

This would be true for any triangular matrix. But the off-diagonal

elements are different
53



Matrix logarithm (logm)

L = logm(A)

[L, exitflag] = logm(A)

L = logm(A) is the principal matrix logarithm of A, the inverse of expm(A).

L is the unique logarithm for which every eigenvalue has imaginary part lying

strictly between -π and π. If A is singular or has any eigenvalues on the negative

real axis, the principal logarithm is undefined. In this case, logm computes a non-

principal logarithm and returns a warning message.

[L, exitflag] = logm(A) returns a scalar exitflag that describes the exit 

condition of logm:

• If exitflag = 0, the algorithm was successfully completed. 54


