MATRIX OPERATIONS



Vectors and Matrices

The row vectors:

The row vectors are entities enclosed in pair of square-brakets with
numbers seperated either by spaces or by commas. For example, enter

two vectors Z and Y as:

>>7 =1[2,4,6,8]

Z=2 4 6 8

>>Y =[4-35-2]

Y=4 -3 5 -2



Adding Two Row Matrices:

Z=[2468]
Y=[4-35-2]

>>SX=7+Y
It creates new row matrix

X=
6 1 11 6

Combination of vectors to form another vector:

W =[Z,Y]



The linear combination of Zand Y:

>> C=4*2+6*Y

C=32 -2 54 20

Application of Build in functions and some command to row Matrix:

sort(W)

ans=-3 -2 2 4 4 5 6 8

min(W)

ans =-3

max(W)

ans =8




sum(W) sin(sum(W)) mean(W)
ans =24 ans =-0.9056 ans =3
log(W)

ans =

Columns 1 through 3

0.6931

1.3863

Columns 4 through 6

2.0794

1.3863

Columns 7 through 8

1.6094

0.6931 + 3.1416i

1.7918

1.0986 + 3.1416i




Rand: Generates an array with elements randomly chosen from the uniform
distribution over the interval [0, 1]

rand
ans =
0.4326

Randn: Generates an array with elements randomly chosen from the normal
distribution function with zero mean and standard deviation 1.

randn
ans =
0.1253




Column Vectors

The column vectors in matlab are formed by using a set of numbers in a
pair of square brackets and seperating them with semi-colon. Therefore, one
can define two column vectors A and B and add them as below:

>> A=[2;3:1],B=[4:6:5], C=A+B

A=
2
3




Index notation:
>> X =[1:9]
X =
1 2 3 4 5 6 7 8 9
Or you may not use [ ] notation
>>X =19
X =

1 2 3 4 5 6 7 8 9
In this example the increment is not given, in this case matlab

default value is “1” so matlab understands that the increment is

one.



Example :

>> X =0:2:10
X =
O 2 4 6 8 10

In this example, the increment is specified as 2’.
Note that in some cases, the upper limit may not be attainable thing.
For example;
>> D= 1:0.3:3
D=

1.0000 1.3000 1.6000 1.9000 2.2000 2.5000 2.8000
Example:

>> 1:-1:5
ans =
Empty matrix: 1-by-0
>>5:-1:1
ans =
5 4 3 2 1



Sections of a Vector:

Let us define a vector using the range notation:

>> W=[1:3,7:9]
W =
1 2 3 7 8 9

Now we would like to extract the middle of two elements of
this vector. This can be done with the range notation again. As
you can see, the middle two elements are 3:4 range. Therefore,
the required part of vector can be obtained as:

>> W(3:4)
ans =

3 7



For example; 6:-1:1is the desending range and when used
with part extraction of vector, it gives:

>> W(6:-1:1)
ans =
9 8 7 3 2 1

Thus by this way we sorted vector numbers from bigger to
smaller values.

>> H=1:2:19
H =
1 3 5 7 9 11 13 15 17 19
>> H(3:2:8)
ans =
5 9 13



Example

>> M=[3,2,7]; N =[6,8,9]; M+N , M-N , M*N

ans =

9 10 16
ans =

3 6 -2

??? Error using ==> mtimes
Inner matrix dimensions must agree

As we can see, M+N and M-N are calculated but M*N can not be calculated.
Because the summation and substraction can be performed when the marix
dimensions are the same. For example, 3x3 matrix can be sum or substract by
only 3x3 matrix. But in multiplication, the number of first vector column must be
equal to the number of second vector row. For example, (2x3) by (3x1) this
results 2x1 vector as shown below.



>> M=[3,2,7:2,3,4], N =[6:8:9], M*N

M =

w N
B~

ool ow

ans =
97
12



If you don't want M an N be seen in the window , we can write by
using Semicolon instead of COMmMma:

>> M=[3,2,7:2,3,4]; N =[6;8;9];M*N
ans =

97
12

14



Transpose

We can convert a column vector into a row vector (and vice versa)

by a process called transposing denoted by ‘ (single quote).

>>c=[1;3;sqrt(5)],c

c=

1.0000
3.0000
2.2361

ans =
1.0000 3.0000 2.2361



>>w=[3-59],c=[1;3;sqrt(5)],t = w + 2*C’
W=

3 -5 9
C =
1.0000

3.0000

2.2361
=

5.0000 1.0000 13.4721

>> T = 5rw/'-2%c
T =
13.0000
-31.0000
40.5279



If X is a complex vector, then x' gives the complex conjugate

transpose of x:
>> x = [1+3i, 2-2i], X’

X =
1.0000 + 3.0000i 2.0000 - 2.0000i

ans =
1.0000 - 3.0000i
2.0000 + 2.0000i
Example :

>> A=[1,3,6;2,7,8;0,3,9]

Then the output appears in the next line as shown below.



A=

1 3 6
2 [ 8
O 3 9

Thus, a matrix is entered row by row, and each row is separated
by the semicolon(;). Within each row, elements are separated by a
space or a comma(,). Commands and variables used in Matlab are
case-sensitive. That is, lower case letters are distinguished from upper
case letters. The size of the matrix is checked with

>> size(A)
ans =3 3
>> A’

ans =

1
3
6

O~NN
© wo



Arrays and Matrices, Basic Information

Length Length of vector or largest array dimension
Max Largest elements in array

Min Smallest elements in array

Size Array dimensions

Eye Identity matrix

Zeros Create array of all zeros

Cross Vector cross product

Dot Vector dot product

Sum Sum of array elements

Sort Sort array elements in ascending or descending order
Det Matrix determinant

Rank Rank of matrix

Inv Matrix inverse

Eig Eigenvalues and eigenvectors

Sgrtm Matrix square root

Expm Matrix exponential

Logm

Matrix logarithm
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Dot product (dot)

C = dot(A,B)
C = dot(A,B,dim)

C = dot(A,B) returns the scalar product of the vectors A and B. A and B
must be vectors of the same length. When A and B are both column vectors,
dot(A,B) is the same as A’*B.

For multidimensional arrays A and B, dot returns the scalar product
along the first non-singleton dimension of A and B. A and B must have the

same size.



C = dot(A,B)
C(::1) =

26 37 174

C(:,:,2) =

91 50 101

c(:,:,3) =

39 75 101

C = dot(A,B,dim) returns the scalar product of

A and B in the dimension dim.
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C = dot(A,B)
c(:,:1) =

26 37 174

C(:,:2) =

91 50 101

c(:,:,3) =

39 75 101



C = dot(A,B,3)
5 1 2-e
2 1 5o
+

10+1+10=21
7 0 1
3 3 2

21+0+2=23

4

8
6 4

4

4

+
48+16+16=80

C=
21 23 80
18 66 144
117 73 152



Product of array elements(prod)

D = prod(A)

D = prod(A,dim)

D = prod(A) returns the products along different dimensions of an array.

If A is a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning a
row vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.
D = prod(A,dim) takes the products along the dimension of A specified by

scalar dim.



i
H O U
w =
o O 0

C = prod(A)

5%0*4 7*1*3 8*9%6

C=[ 0 21  432]



Vector cross product(cross)
C = cross(A,B)
C = cross(A,B,dim)

C = cross(A,B) returns the cross product of the vectors A and B. That
IS, C = A x B. A and B must be 3-element vectors. If A and B are
multidimensional arrays, cross returns the cross product of A and B along

the first dimension of length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays,
returns the cross product of A and B in dimension dim. A and B must have

the same size, and both size(A,dim) and size(B,dim) must be 3.



Example

The cross product of two vectors are calculated as shown:
>>a=[123],

b=[4586]:

c = cross(a,b)
c=
-3 6 -3

c = cross(b,a)

27



Matrix determinant(det)

d = det(X)

d = det(X) returns the determinant of the square matrix X. If X

contains only integer entries, the result d is also an integer.



The determinant of a matrix A is denoted det(A), det A, or |A|.

In the case where the matrix entries are written out in full, the determinant is denoted
by surrounding the matrix entries by vertical bars instead of the brackets or
parentheses of the matrix. For instance, the determinant of the matrix

a b ¢

d e f

g ho1
IS written

b ¢
e f
h 1

e TS W

and has the value

(aet + bfg + cdh) — (ceg + bdi + afh).



Examples
*The statementA=[123;456; 7 8 9]

Produces

A=
1 2 3
4 5 6
7 8 9

>>A=[123;456; 7 8 9], det(A)
ans =
0
This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix. Now d = det(A)
produces d = 27.

*The statement B=[17-5;4-36; -1 8 9]; det(B)
Produces

>>B=[17-5;4-36;-18 9]; det(B)
ans =
-514



Matrix inverse(inv)
Y = inv(X)
Y = inv(X) returns the inverse of the square matrix X. A warning

message is printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises when solving the system of linear

equations Ax=Db.

One way to solve this is with x = inv(A)*b. A better way, from both an
execution time and numerical accuracy standpoint, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian

elimination, without forming the inverse.



Example . Matrix Inverse Operation

We add -2 times of first row to second row and -1 times of first row to third row

1 1 1 1 00
0 -2 -1 -210
0 -2 0 -1 01

Secos row is divided by -2 and we add the result with times 2 to third row.

11 1 1 0 O
0 1121 -12 0
o0 1 1 -1 1



We add -1/2 times of third row to second row and -1 times of third row to first row

110 0 1 -1
0 1012 0 -1/2
001 1 -1 1

We add -1 times of second row to first row

100 -1/2 1 -1/2
010 12 0 -1/2
coo01 1 -1 1

We obtain inverse matrix of A. Left side is unit matrix. Right side is inverse matrix. (A1)

-1/2 1 -1/2
At=112 0 -12
1 -1 1



>>A=[123;456]; B=inv(A)

??? Error using =» inv

Matrix must be square.

>>A=[123;456;342]; B=inv(A)
B=

-1.5556 0.8889 -0.3333

1.1111 -0.7778 0.6667

0.1111 0.2222 -0.3333

34



Sum of array elements(sum)

B = sum(A)

B = sum(A,dim)

B = sum(..., ‘double’)

B = sum(..., dim,’double’)
B = sum(..., ‘native’)

B = sum(..., dim,’ native’)

B =sum(A) returns sums along different dimensions of an array.

If A'is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a

row vector of the sums of each column.

If A is a multidimensional array, sum(A) treats the values along the

first non-singleton dimension as vectors, returning an array of row vectors.



B = sum(A,dim) sums along the dimension of A specified by scalar
dim. The dim input is an integer value from 1 to N, where N is the
number of dimensions in A. Set dim to 1 to compute the sum of each
column, 2 to sum rows, etc.

B = sum(..., ‘double’) and B = sum(..., dim,’double’) performs
additions in double-precision and return an answer of type double, even
If A has data type single or an integer data type. This is the default for
Integer data types.

B = sum(..., ‘native’) and B = sum(..., dim, native’) performs
additions in the native data type of A and return an answer of the same
data type. This is the default for single and double.

Remarks:

sum(diag(X)) is the trace of X.



Examples

The magic square of order 3 is
M = magic(3)
M =
8 1 6
3 5 7
4 9 2
This is called a magic square because the sums of the elements in
each column are the same.
Sum(M) =
15 15 15
as are the sums of the elements in each row, obtained either by

transposing or using thedim argument.



*Transposing

sum(M’) =
15 15 15

*Using the dim argument

sum(M,1)

ans =
15 15 15



Length of vector or largest array dimension(length)
numberOfElements = length(array)

Number Of Elements = length(array) finds the number of elements along the largest
dimension of an array. Array is an array of any matlab data type and any valid dimensions.

numberOfElements is a whole number of the matlab double class.

For non-empty arrays, number of elements is equivalent to max(size(array)). For
empty arrays, number of elements is zero.

Example

Create a 1-by-8 array X and use length to find the number of elements in the second
(largest) dimension:

X =[5,3.4,72,28/4,3.61,17, 94, 89];
length(X)

ans = 8



Largest elements in array(max)

C = max(A)

C = max(A,B)

C = max(A,[],dim)
[C,1] = max(...)

C = max(A) returns the largest elements along different dimensions of an
array.

If A'is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row
vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first non-
singleton dimension as vectors, returning the maximum value of each vector.



C = max(A,B) returns an array the same size as A and B with the
largest elements taken from A or B. The dimensions of A and B must
match, or they may be scalar.

C = max(A,[],dim) returns the largest elements along the dimension
of A specified by scalar dim. For example, max(A,[ ],1) produces the
maximum values along the first dimension (the rows) of A.

[C,1] = max(...) finds the indices of the maximum values of A, and
returns them in output vector I. If there are several identical maximum

values, the index of the first one found Is returned.



Smallest elements in array(min)

C =min(A)

C =min(A,B)

C = min(A,[],dim)
[C,1] = min(...)

C = min(A) returns the smallest elements along different dimensions of an

array.

If A'is a vector, min(A) returns the smallest element in A.

If A'is a matrix, min(A) treats the columns of A as vectors, returning a row

vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first nonsingleton

dimension.



C = min(A,B) returns an array the same size as A and B with the smallest
elements taken from A or B. The dimensions of A and B must match, or they may
be scalar.

C = min(A,[],dim) returns the smallest elements along the dimension of A
specified by scalar dim. For example, min(A,[],1) produces the minimum values

along the first dimension (the rows) of A.

[C,1] = min(...) finds the indices of the minimum values of A, and returns
them in output vector I. If there are several identical minimum values, the index of

the first one found is returned.



Average or mean value of array (mean)

M = mean(A)
M = mean(A,dim)

M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A Is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row
vector of mean values.

If A Is a multidimensional array, mean(A) treats the values along the first
non-singleton dimension as vectors, returning an array of mean values.

M = mean(A,dim) returns the mean values for elements along the dimension
of A specified by scalar dim. For matrices, mean(A,2) is a column vector containing
the mean value of each row.



Examples

A=[123;336;468;477];
mean(A)

ans =
3.0000 4.5000 6.0000

mean(A,2)

ans =
2.0000
4.0000
6.0000
6.0000



Median value of array(median)
M = median(A)
M = median(A,dim)

M = median(A) returns the median values of the elements along different

dimensions of an array. A should be of type single or double.
If A Is a vector, median(A) returns the median value of A.

If A Is a matrix, median(A) treats the columns of A as vectors, returning a

row vector of median values.

If A is a multidimensional array, median(A) treats the values along the first

nonsingleton dimension as vectors, returning an array of median values.



M = median(A,dim) returns the median values for elements along
the dimension of A specified by scalar dim.

Examples

A=[1244:3466;5688:5688]

A=

1 2 4 4
3 4 6 6
5 6 8 8
5 6 8 8
median(A)
ans =

4 5 7 7
median(A,2)
ans =

N~ oW



Identity matrix(eye)

Y =eye(n)

Y = eye(m,n)

Y = eye([mn])

Y = eye(size(A))

Y = eye(m, n, classname)

Y = eye(n) returns the n-by-n identity matrix.

Y =eye(m,n) or Y = eye([m n]) returns an m-by-n matrix with 1's on the
diagonal and O's elsewhere. The size inputs m and n should be nonnegative integers.
Negative integers are treated as 0.

Y = eye(size(A)) returns an identity matrix the same size as A.

Y = eye(m, n, classname) is an m-by-n matrix with 1's of class classname on the
diagonal and zeros of class classname elsewhere. classname is a string specifying
the data type of the output. classname can take the following values: 'double’,
'single’, 'int8', 'uint8', 'intl6’, 'uintl6’, 'Int32', 'uint32', 'int64', or 'uint64'.



The identity matrix is not defined for higher-dimensional arrays.

The assignment y = eye([2,3,4]) results in an error.

Examples

Return a 3-by-5 matrix of class int8:

>> X = eye(3,5,'Int8")

X =
1 0 0 0 O
0 1 0 0 O
0 01 0O



Matrix square root(sqrtm)
X =sqrtm(A)

[X, resnorm] = sgrtm(A)

[X, alpha, condest] = sqrtm(A)

X =sgrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X 1s the unique square root for which every eigenvalue has nonnegative
real part. If A has any eigenvalues with negative real parts then a complex
result is produced. If A is singular then A may not have a square root. A

warning is printed if exact singularity is detected.



Example

A matrix representation of the fourth difference operator is
X=[5-4100;-46-410;1-46-41,01-46-4,001-45]

X =

5 -4 1 0 0

4 6 -4 1 0

1 4 6 -4 1

0 1 -4 6 -4

0O 0 1 4 5
This matrix is symmetric and positive definite. Its unique positive definite square
root, Y = sqrtm(X), is a representation of the second difference operator.
Y =

2.0000 -1.0000 0.0000 0.0000 0.0000

-1.0000 2.0000 -1.0000 0.0000 -0.0000

0.0000 -1.0000 2.0000 -1.0000 0.0000

0.0000 0.0000 -1.0000 2.0000 -1.0000

0.0000 -0.0000 0.0000 -1.0000 2.0000



Matrix exponential (expm)

Y = expm(X)

Y = expm(X) computes the matrix exponential of X.

Although it is not computed this way, if X has a full set of eigenvectors V

with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = VV*diag(exp(diag(D)))/\VV

Examples

This example computes and compares the matrix exponential of A and the
exponential of A.




0 0 2
0 0o -1];
expm(A)

ans =
2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

exp(A)

ans =
2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are equal.
This would be true for any triangular matrix. But the off-diagonal
elements are different



Matrix logarithm (logm)
L = logm(A)
[L, exitflag] = logm(A)

L = logm(A) is the principal matrix logarithm of A, the inverse of expm(A).
L is the unique logarithm for which every eigenvalue has imaginary part lying
strictly between - and =. If A is singular or has any eigenvalues on the negative
real axis, the principal logarithm is undefined. In this case, logm computes a non-

principal logarithm and returns a warning message.

[L, exitflag] = logm(A) returns a scalar exitflag that describes the exit

condition of logm:

« If exitflag = 0, the algorithm was successfully completed.



