
Introduction to Python
Language

DECISION STRUCTURES

Today

o Comparison operations

o Logic Operations

o Decision Structures

COMPARISON OPERATORS ON int, float, string

o i and j are variable names

o comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j

i != j

equality test, True if i is the same as j

inequality test, True if i is not the same as j

Notice especially the use of == for equality. Since Python uses the = sign to indicate an

assignment statement, a different symbol is required for the concept of equality. A common

mistake in Python programs is using = in conditions, where a == is required.

LOGIC OPERATORS ON bools

o a and b are variable names (with Boolean values)

o comparisons below evaluate to a Boolean

not a
True if a is False

a and b

a or b

False if a is True

True if both are True

True if either or both are True

LOGIC OPERATORS ON bools

comparison_examples.py

Read two numbers from the user

x = int(input("Enter first number: "))

y = int(input("Enter second number: "))

print("\nComparison Results:")

Basic comparisons

print("x == y :", x == y) # equal to

print("x != y :", x != y) # not equal to

print("x > y :", x > y) # greater than

print("x < y :", x < y) # less than

print("x >= y :", x >= y) # greater than or equal to

print("x <= y :", x <= y) # less than or equal to

Decision Structures (Branching)

o We have mostly viewed computer programs as sequences of instructions that are

followed one after the other. Sequencing is a fundamental concept of programming, but

alone it is not sufficient to solve every problem.

o Often it is necessary to alter the sequential flow of a program to suit the needs of a

particular situation. This is done with special statements known as control structures.

o Control structures are statements that allow a program to execute different sequences of

instructions for different cases, effectively allowing the program to "choose" an

appropriate course of action.

- Input temperature in Celcius

- Calculate Fahrenheit

- if temperature >90, print «a heat

warning»

- if temperature <30, print «a cold

warning»

- One-Way

Decision

- Two-Way

Decision

- Multi-Way

Decision

Example: Write a program to find the real roots of a quadratic equation:

Such an equation has two real roots and can be calculated by using

following formula:

quadratic.py

A program that computes the real roots of a quadratic equation.

Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

print ("This program finds the real solutions to a quadratic")

print ()

a = float (input ("Enter coefficient a: "))

b - float (input ("Enter coefficient b: "))

c = float (input ("Enter coefficient c: "))

discRoot = math.sqrt (b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ()

print ("The solutions are: ", root1, root2)

Let's write a program that can find the solutions to a quadratic equation. The

input to the program will be the values of the coefficients a, b, and c. The

outputs are the two values given by the quadratic formula.

- To compute 𝑥, we use math.sqrt(x) . This special dot notation tells Python to use the sqrt

function that "lives" in the math module.

- This program crashes when it is given coefficients of a quadratic equation that has no real roots. The

problem with this code is that when b2 - 4ac is less than 0, the program attempts to take the square

root of a negative number. Since negative numbers do not have real roots, the math library reports an

error.

- We can use a decision to check for this situation and make sure that the program can't crash.

print ("This program find s the real solutions to a quadratic\n")

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discrim = b * b - 4 * a * c

if discrim >= 0:

main ()

discRoot = math.sqrt(discrim)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", root1, root2)

Still, this updated version is not really a complete solution. Do you see what happens when the

equation has no real roots? According to the semantics for a simple if, when b*b - 4*a* c is less than

zero, the program will simply skip the calculations and go to the next statement. Since there is no

next statement, the program just quits.

Still, this updated version is not really a complete solution. Do you see what happens when the

equation has no real roots? According to the semantics for a simple if, when b*b - 4*a* c is less than

zero, the program will simply skip the calculations and go to the next statement. Since there is no

next statement, the program just quits.

This is almost worse than the previous version, because it does not give users any indication of what

went wrong; it just leaves them hanging. A better program would print a message telling users that

their particular equation has no real solutions.

We could accomplish this by adding another simple decision at the end of the program.

if discrim < 0:

print ("The equation has no real roots!")

quadratic.py

A program that computes the real roots of a quadratic equation.

Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

print ("This program find s the real solutions to a quadratic\n")

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discrim = b * b - 4 * a * c

if discrim >= 0:

 discRoot = math.sqrt(discrim)

 root1 = (-b + discRoot) / (2 * a)

 root2 = (-b - discRoot) / (2 * a)

 print ("\nThe solutions are :", root1, root2)

if discrim < 0:

 print ("The equation has no real roots!")

We have programmed a sequence of two decisions, but the two outcomes are mutually exclusive. If

discrim >= 0 is true then discrim < 0 must be false and vice versa. We have two conditions

in the program, but there is really only one decision to make.

In Python, a two-way decision can be implemented by attaching an else clause onto an if clause. The

result is called an if- else statement.

When the Python interpreter encounters this structure, it will first evaluate the condition. If the

condition is true, the statements under the if are executed. If the condition is false, the statements

under the else are executed.

import math

print ("This program find s the real solutions to a quadratic\n")

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discrim = b * b - 4 * a * c

if discrim < 0 :

print ("\nThe equation has no real roots!")

else :

discRoot = math . sqrt (b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", root1, root2)

Multi-way Decisions

The newest version of the quadratic solver is certainly a big improvement, but it still has some quirks

(oddity). Here is another example run:

This is technically correct; the given coefficients produce an equation that has a double root at -1.

However, the output might be confusing to some users.

The program should be a bit more informative to avoid confusion.

The double-root situation occurs when discrim is exactly 0. In this case, discRoot is also 0, and both

roots have the value
−𝑏

2𝑎
.

If we want to catch this special case, our program actually needs a three-way decision. Here's a quick

sketch of the design:

The program should be a bit more informative to avoid confusion.

The double-root situation occurs when discrim is exactly 0. In this case, discRoot is also 0, and both

roots have the value
−𝑏

2𝑎
.

If we want to catch this special case, our program needs a three-way decision. Here's a quick sketch

of the design:

if discrim < 0 :

print ("Equation has no real roots")

else :

if discrim == 0 :

root = -b / (2 * a)

print ("There is a double root at", root)

else :

Do stuff for two roots

There is another way to write multi-way

decisions in Python that preserves the

semantics of the nested structures but

gives it a more appealing look.

The idea is to combine an else followed

immediately by an if into a single clause

called an elif.

The final version of our program is:

import math

print ("This program find s the real solutions to a quadratic\n")

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discrim = b * b - 4 * a * c

if discrim < 0 :

print ("\nThe equation has no real roots!")

elif discrim == 0 :

root = -b / (2 * a)

print ("\nThere is a double root at", root)

else :

discRoot = math . sq rt (b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", root1, root2)

Exception Handling

o Our quadratic program uses decision structures to avoid taking the square root of a negative

number and generating an error at runtime.

o This is a common pattern in many programs: using decisions to protect against rare but possible

errors.

o In the case of the quadratic solver, we checked the data before the call to the sqrt function.

Sometimes functions themselves check for possible errors and return a special value to indicate

that the operation was unsuccessful.

o For example, a different square root operation might return a negative number (say, -1) to

indicate an error. Since the square root function should always return the non-negative root, this

value could be used to signal that an error has occurred.

o The program would check the result of the operation with a decision:

o Programs can become so cluttered with special case checks that the main algorithm for standard

cases gets lost.

o Programming language designers have created exception-handling mechanisms to tackle common

errors. These allow programmers to write code that catches and manages errors during execution.

Instead of checking each step for success, a program can simply state, "Execute these steps, and

handle any issues that arise in this way."

Here is a version of the quadratic program that uses Python's exception mechanism to catch potential

errors in the math . sqrt function:

import math

print ("This program find s the real solutions to a quadratic\n")

try :

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discRoot = math.sqrt (b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", root1, root2)

except ValueError :

print ("\nNo real roots")

Notice that this is basically the very

first version of the quadratic program

with the addition of a try . . . except

around the heart of the program.

A try statement has the general form:

• When Python encounters a try statement, it attempts to execute the

statements inside the body. If these statements execute without

error, control then passes to the next statement after the try . . .

except.

• If an error occurs somewhere in the body, Python looks for an

except clause with a matching error type.

• If a suitable except is found, the handler code is executed.

The original program without the exception handling produced the following error:

• The last line of this error

message indicates the type of

error that was generated, namely

a ValueError.

The updated version of the program provides an except clause to catch the ValueError. Here's how it

looks in action:

Interestingly, our new program also catches errors caused by the user typing invalid input values. Let's

run the program again, and this time type "x" as the first input.

• Instead of crashing, the exception

handler catches the error and prints a

message indicating that the equation

does not have real roots.

Interestingly, our new program also catches errors caused by the user typing invalid input values. Let's

run the program again, and this time type "x" as the first input.

• Python raised a ValueError executing

float ("x") because "x" is not

convertible to a float. This caused the

program to exit the try and jump to the

except clause for that error.

• Ofcourse, the last message looks a bit of

strange.

Final version of our program is:

import math

print ("This program find s the real solutions to a quadratic\n")

try :

a = float (input ("Enter coefficient a : "))

b = float (input ("Enter coefficient b : "))

c = float (input ("Enter coefficient c : "))

discRoot = math . sqrt (b * b - 4 * a * c)

root1 = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", root1, root2)

except ValueError as excObj :

if str (excObj) == "math domain error" :

print ("No Real Roots")

else :

print ("Invalid coefficient given")

except :

print ("\nSomething went wrong, sorry!")

• If the exception is not a

ValueError, this program

just prints a general

apology. As a challenge,

you might see whether

you can find an erroneous

input that produces the

apology.

• excObj: variable named as

«exception object» is

assigned to an error and

kept for later usage or

logging purposes

	Slayt 1: Introduction to Python Language
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29

