Introduction to Python
Language

A

DECISION STRUCTURES

Today

o Comparison operations
o Logic Operations
o Decision Structures

COMPARISON OPERATORS ON int, float, string

o1and] are variable names
O comparisons below evaluate to a Boolean

1 == equality test, True if i is the same as
11=9 inequality test, True if i is not the same as 3

Notice especially the use of == for eguality. Since Python uses the = sign to indicate an
assignment statement, a different symbol is required for the concept of equality. A common
mistake in Python programs is using = in conditions, where a == is required.

LOGIC OPERATORS ON bools

o a and b are variable names (with Boolean values
- (SN A B |AandB |AorB
O comparisons below evaluate to a Boolean

True True True True

, , True False False True
— Trueif a 1s False

not a False True False True

— Falseif a 1s True 25 False False False

a and b— True if both are True

a Or b —— True if either or both are True

LOGIC OPERATORS ON bools

comparison examples.py

Read two numbers from the user

x = 1int (input ("Enter first number: "))
y = int (input ("Enter second number: "))

print ("\nComparison Results:")

Basic comparisons

print ("x == ", X == V) # equal to

print ("x !'=y ", x !=vy) # not equal to

print("x >y ", x > V) # greater than

print("x <y ", x < V) # less than

print ("x >= vy ", x >= vVy) # greater than or equal to
print ("x <=y :", x <= V) # less than or equal to

Decision Structures (Branching)

o We have mostly viewed computer programs as sequences of instructions that are
followed one after the other. Sequencing is a fundamental concept of programming, but
alone 1t is not sufficient to solve every problem.

o Often it 1s necessary to alter the sequential flow of a program to suit the needs of a
particular situation. This is done with special statements known as control structures.

o Control structures are statements that allow a program to execute different sequences of
instructions for different cases, effectively allowing the program to "choose" an

approptiate course of action.

Input Celsius Temperature
Farenheit = 9/5 * celsius + 32
Print Fahrenheit

fahrenheit > 907

yes

|

Print a Heat Warning

yes

fahrenheit < 307

|

Print a Cold Warning

Input temperature in
Calculate Fahrenheit
1if temperature >90,
warning»

1f temperature <30,
warning»

Celcius
print «a heat

print «a cold

if <condition>:
<body>

- One-Way
Decision

1f <condition>:
<statements>

else:
<statements>

- Two-Way
Decision

if <conditionl>:
<casel statements>

elif <condition2>:
<case2 statements>

elif <condition3>:
<case3 statements>

else:
<default statements>

- Multi-Way
Decision

Example: Write a program to find the real roots of a gquadratic equation:
ax’? +br+c=0

Such an equation has two real roots and can be calculated by using
following formula:

_ —b+ V% — dac
- 2a

T

Let's write a program that can find the solutions to a quadratic equation. The
input to the program will be the values of the coefficients a, b, and c¢. The
outputs are the two values given by the quadratic formula.

quadratic.py

A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

print ("This program finds the real solutions to a quadratic")
print ()

a = float (input ("Enter coefficient a: "))

b - float (input ("Enter coefficient b: "))

c = float (input ("Enter coefficient c: "))

discRoot = math.sgrt (b * b - 4 * a * c)

rootl = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ()

print ("The solutions are: ", rootl, root2)

- To compute v/x, we use math.sqgrt (x) . This special dot notation tells Python to use the sqrt
function that "lives" in the math module.

- This program crashes when it is given coetficients of a quadratic equation that has no real roots. The
problem with this code is that when b? - 4ac is less than 0, the program attempts to take the square
root of a negative number. Since negative numbers do not have real roots, the math library reports an
errof.

- We can use a decision to check for this situation and make sure that the program can't crash.

This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 2

Enter coefficient c¢: 3

Traceback (most recent call last):

File "C:\Users\N.Furkan\AppData\Local\Programs\Python\Python313\Scripts\quadra
tic.py", line 13, in <module>
discRoot = math.sqrt (b * b - 4 * a * c)
ValueError: math domain error

print ("This program find s the real solutions to a quadratic\n")

a = float (input ("Enter coefficient a : "))
b = float (input ("Enter coefficient b : "))
c = float (input ("Enter coefficient c¢c : "))
discrim = b * b - 4 * a * ¢

if discrim >= O:
main ()

discRoot = math.sqgrt (discrim)

rootl = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print ("\nThe solutions are :", rootl, root2)

Still, this updated version is not really a complete solution. Do you see what happens when the
equation has no real roots? According to the semantics for a simple if, when b*b - 4*a* c is less than
zero, the program will simply skip the calculations and go to the next statement. Since there 1s no
next statement, the program just quits.

Still, this updated version is not really a complete solution. Do you see what happens when the
equation has no real roots? According to the semantics for a simple if, when b*b - 4*a* c is less than
zero, the program will simply skip the calculations and go to the next statement. Since there 1s no
next statement, the program just quits.

This program find s the real solutions to a quadratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient ¢ : 3

>>>

This is almost worse than the previous version, because it does not give users any indication of what
went wrong; it just leaves them hanging. A better program would print a message telling users that
their particular equation has no real solutions.

We could accomplish this by adding another simple decision at the end of the program.

1f discrim < O:
print ("The equation has no real roots!")

quadratic.py

A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.

Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

print ("This program find s the real solutions to a quadratic\n")
a = float (input ("Enter coefficient a : "))
b = float (input ("Enter coefficient b : "))
c = float (input ("Enter coefficient c : "))
discrim = b * b - 4 * a * c
1f discrim >= O:
discRoot = math.sqgrt (discrim)
rootl = (-b + discRoot) / (2 * a)
root2 = (-b - discRoot) / (2 * a)
print ("\nThe solutions are :", rootl, root2)

1f discrim < O:
print ("The equation has no real roots!")

We have programmed a sequence of two decisions, but the two outcomes are mutually exclusive. If
discrim >= 0 is #ue then discrim < 0 must be false and vice versa. We have two conditions
in the program, but there is really only one decision to make.

In Python, a two-way decision can be implemented by attaching an else clause onto an 1if clause. The
result 1s called an if- else statement.

if <condition>: no yes
<statements>
Y \
else:
Calculate roots Print “no roots”
<statements>

When the Python interpreter encounters this structure, it will first evaluate the condition. If the

condition is true, the statements under the if are executed. If the condition is false, the statements
under the else are executed.

import math

print

a = float (input
b = float (input
c = float (input

discrim = b * b -
if discrim < 0

("This program find s the real solutions to a quadratic\n"

("Enter coefficient a : "))
("Enter coefficient b : "))
("Enter coefficient c

4 * g * ¢C

print ("\nThe equation has no real roots!")
else

discRoot = math sgrt (b * b - 4 * a * ¢)

rootl = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", rootl, root2)

)

This program find s the real solutions to a quadratic

Enter coefficient a : 1
Enter coefficient b : 2
Enter coefficient ¢ : 3

The equation has no real roots!

This program find s the real solutions to a quadratic

Enter coefficient a : 2
Enter coefficient b : 4
Enter coefficient ¢ : 1

The solutions are : -0.2928932188134524 -1.7071067811865475

Multi-way Decisions

The newest version of the quadratic solver is certainly a big improvement, but it still has some quirks

(oddity). Here is another example run:

This program find s the real solutions to a quadratic

Enter coefficient a 1
Enter coefficient b : 2
Enter coefficient ¢ : 1
The solutions are : -1.0 -1.0

This is technically correct; the given coetficients produce an equation that has a double root at -1.
However, the output might be confusing to some users.

The program should be a bit more informative to avoid confusion.

The double-root situation occurs when discrim 1s exactly 0. In this case, discRoo? 1s also 0, and both

—-b
roots have the value Py

If we want to catch this special case, our program actually needs a three-way decision. Here's a quick

sketch of the design:

Check the value of discrim
when < 0: handle the case of no roots
when = 0: handle the case of a double root
when > O0: handle the case of two distinct roots.

The program should be a bit more informative to avoid confusion.

The double-root situation occurs when discrim 1s exactly 0. In this case, discRoo? 1s also 0, and both

—-b
roots have the value Py

If we want to catch this special case, our program needs a three-way decision. Here's a quick sketch

of the design:

1f discrim < O
print ("Equation has no real roots")
else

1f discrim == 0 :
root = -b / (2 * a)
print ("There 1s a double root at", root)

else

Do stuff for two roots

There 1s another way to write multi-way
decisions in Python that preserves the
semantics of the nested structures but
gives it a more appealing look.

The idea is to combine an else followed

immediately by an 7f into a single clause

called an elif

if <conditionl>:
<casel statements>

elif <condition2>:
<case2 statements>

elif <condition3>:
<case3d statements>

else:
<default statements>

The final version of our program is:

import math

print ("This program find s the real solutions to a quadratic\n"
a = float (input ("Enter coefficient a : "))
b = float (input ("Enter coefficient b : "))
c = float (input ("Enter coefficient ¢ : "))
discrim = b * b - 4 * a * c
1f discrim < 0

print ("\nThe equation has no real roots!")
elif discrim == :

root = -b / (2 * a)

print ("\nThere is a double root at", root)
else

discRoot = math . sgrt (b * b - 4 * a * ¢)

rootl = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", rootl, root2)

)

Exception Handling

Our quadratic program uses decision structures to avoid taking the square root of a negative
number and generating an error at runtime.

This is a common pattern in many programs: using decisions to protect against rare but possible
errofrs.

In the case of the quadratic solver, we checked the data before the call to the sqrt function.
Sometimes functions themselves check for possible errors and return a special value to indicate
that the operation was unsuccesstul.

For example, a different square root operation might return a negative number (say, -1) to
indicate an error. Since the square root function should always return the non-negative root, this
value could be used to signal that an error has occurred.

The program would check the result of the operation with a decision:

discRt = otherSqrt(b*b - 4x*a*c)
if discRt < O:

print ("No real roots.")
else:

o Programs can become so cluttered with special case checks that the main algorithm for standard
cases gets lost.

o Programming language designers have created exception-handling mechanisms to tackle common
errors. These allow programmers to write code that catches and manages errors during execution.
Instead of checking each step for success, a program can simply state, "HExecute these steps, and
handle any issues that arise in this way."

Here is a version of the quadratic program that uses Python's exception mechanism to catch potential

errors in the math . sqrt function:

import math

except ValueError
print ("\nNo real roots")

("This program find s the real solutions to a quadratic\n")

")
")
")

print

try

a = float (input ("Enter coefficient a
b = float (input ("Enter coefficient b
c = float (input ("Enter coefficient c
discRoot = math.sgrt (b * b - 4 * a * c)
rootl = (-b + discRoot) / (2 * a)

root2 = (-b - discRoot) / (2 * a)

print ("\nThe solutions are :", rootl,

root?2)

Notice that this is basically the very
first version of the quadratic program
with the addition of a try . .. except
around the heart of the program.

A try statement has the general form:

* When Python encounters a try statement, it attempts to execute the

try: statements inside the body. If these statements execute without
<body> error, control then passes to the next statement after the try . . .
except <ErrorType>: except.
<handler> * If an error occurs somewhere in the body, Python looks for an

except clause with a matching error type.
* If a suitable except is found, the handler code is executed.

The original program without the exception handling produced the following error:

Traceback (most recent call last):
File "quadratic.py", line 23, in <module>
main()
File "quadratic.py", line 16, in main
discRoot = math.sqrt(b * b - 4 * a * c)
ValueError: math domain error

* The last line of this error
message indicates the type of
error that was generated, namely
a ValueError.

The updated version of the program provides an except clause to catch the ValueError. Here's how it
looks in action:

This program finds the real solutions to a quadratic

Enter coefficient a: 1

Enter coefficient b: 2
Enter coefficient c: 3

* Instead of crashing, the exception
handler catches the error and prints a
message indicating that the equation

does not have real roots.
No real roots

Interestingly, our new program also catches errors caused by the user typing invalid input values. Let's

run the program again, and this time type "x" as the first input.

Interestingly, our new program also catches errors caused by the user typing invalid input values. Let's

run the program again, and this time type "x" as the first input.

This program finds the real solutions to a quadratic

Enter coefficient a: x * Python raised a ValueError executing

float ("x") because "x" is not
convertible to a float. This caused the
program to exit the try and jump to the

except clause for that error.

No real roots

* Ofcourse, the last message looks a bit of
strange.

Final version of our program is:

import math

print ("This program find s the real solutions to a quadratic\n")

try
a = float (input ("Enter coefficient a : ")) . If the exception is not a
b = float (input ("Enter coefficient b : ")) ValueError, this program
c = float (input ("Enter coefficient c¢c : ")) just prints a general
discRoot = math . sgrt (b * b - 4 * a * ¢) apology. As a challenge,
rootl = (-b + discRoot) / (2 * a) you might see whether
root2 = (-b - discRoot) / (2 * a) you can find an erroneous
print ("\nThe solutions are :", rootl, root2) input that produces the

except ValueError as excObj : oology
1f str (excObj) == "math domain error"

print ("No Real Roots") * excObj: variable named as

clse «exception object» is

print ("Invalid coefficient given") Zsigiied 10 o @RI A

kept for later usage or

except :
logging purposes

print ("\nSomething went wrong, sorry!")

	Slayt 1: Introduction to Python Language
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29

