

Introduction to Python

p Language

Prepared based on the slides from the Computer Programming lecture slides of Wellesley College.

Python Intro Overview

o Values: 10 (integer),
3.1415 (decimal number or float),
‘GAZIANTEP' (text or string)

o Types: numbers and text: int, £loat, str
type (10)
type (‘gaziantep')

o Operators: + - * / % =

o Expressions: (they always produce a value as a result)
'abc' + 'def’ -> 'abcdef'

Knowing the type of a
value allows us to choose
the right operator when

creating expressions.

Simple Expressions: Python as calculator

Input Expressions Output Values Out

In[...] [...]

1+2 3

34 12 # Spaces don't matter

3 * 4 12

3 4%5 67 19 278 # Floating point (decimal) operations

5 + 3%4 14 # Precedence: * binds more tightly than +
(2+3) *4 20 # Overriding precedence with parentheses
11 / 4 2 .75 — # Floating point (decimal) division

11 // 4 2 —— # Integer division

11 % 4 3 —— # Remainder (often called modulus)

5 - 3.4 1.6

3.25 * 4 13.0

11.0// 2 5.0

5// 2.25 2.0 # output is float if at least one input is float
5 % 2.25 0.5

Strings and concatenation

A string is just a sequence of characters that we write between a pair of double quotes or a pair of single
quotes. Strings are usually displayed with single quotes. The same string value is created regardless of
which quotes are used.

In[...] Out[...]

"ME444" 'ME444' # Characters in a string
'rocks!' 'rocks!' # can include spaces,
'You say "Hi!"' 'You say "Hi!'"'’ # punctuation, quotes
"No, I didn’t" "No, I didn’t"

"ME444 " + 'rocks!’ 'ME444 rocks!’ # String concatenation
'123' + '4" '1234" # Strings and numbers
123 + 4 127 # are very different!
123" 4+ 4 TypeError # Can’t concatenate strings & num.
'123' * 4 '123123123123" # Repeated concatenation
'123' * '4" TypeError

Memory Diagram Model:
Variable as a Box

o A variable 1s a way to remember a value for later in the computer’s memory.

o A variable 1s created by an assignment statement, whose form 1s
varName = expression

Example: ans = 42 # ansis the varName, 42 is the expression saved in ans
This line of code is executed in two steps:
1. Evaluate expression to its value val
2. If there is no variable box already labeled with varName, create a new box
labeled with varName and store val in it; otherwise, change the contents of the existing box

labeled varName to val.

Memory diagram

ans |42

Memory Diagram Model:
Variable as a Box

o How does the memory diagram change 1f we evaluate the following expression?

ans = 2*ans+27

ans (111

o The expression checks the most recent valof ans(42), re-evaluates the new expression
based on that value, and reassigns the value of ans accordingly.
o ans 2%42+277

o ans = 111

Variable Examples

IiIIIIIIIIIIIIIIIIIIIIIIIIIIIIiiillll|ﬁiﬁi|IIIIIIIIIIIIIII

fav =

fav

fav + fav

lucky = 8

fav + lucky

asSum = fav + lucky

asum * aSum

tr*

17
34
lucky
25
aSum
625

Assignment statements makes
box, no output

Returns current contents of fav

The contents of fav are
unchanged

Makes new box, has no output

Variable contents unchanged

Makes new box, has no output

Variable contents unchanged

Variable Examples

How does the memory diagram change when we change the values
of our existing variables? How are strings stored in memory?

_-

fav = £, Change contents
“ of fav box to 11

fav = fav - luck . Change contents
Y L of favgb-::x to 3

name = 'Cs111'" Makes new box

containing string.
name D Strings are drawn
*outside® box with
1Ccg111" arrow pointing to
them (b/c they're
often “too big” to fit
inside box

name*fav 'CS111CS111Cs111"' string*int will
repeat the string
int # of times

Built-in Functions

max Returns the largest item 1n an iterable (An iterable 1s an object we can

loop over, like a list of numbers. We will learn about them soon!)

min Returns the smallest item in an iterable

id Returns memory address of a value

type Returns the type of a value

len Returns the length of a sequence value (strings are an example)
str Converts and returns the mnput as a string

int Converts and returns the input as an integer number

float Converts and returns the mput as a floating point number
round Rounds a number to nearest integer or decimal point

print Prints a specified message on the screen/output device,

and returns the None value.

input Asks user for mput, converts input to a string, returns the string

Built-in Functions: max and min functions

Python has many built-in functions that we can use. Built-in functions and user-defined variable and function
names names are highlighted with different colors in the compiler.

In[...] Out [...]

min(7, 3) 3

max (7, 3) 7

min(7, 3, 2, 8.19) 2 # can take any num. of arguments
max(7, 3, 2, 8.19) 8.19

smallest = min (-5, 2) # smallest gets -5

largest = max(-3.4, -10) # largest gets -3.4
max (smallest, largest, -1) -1

The inputs to a function are called its arguments and the function is said to be called on its arguments. In
Python, the arguments in a function call are delimited by parentheses and separated by commas.

Understanding variable and function names

One value can have multiple names. These names refer to the same value in the computer memory. See the
examples below for variables and functions.

_ >>> max

>>> oneValue = 'abc’ me“m§3“:+: <built-in function max>
Values.

>>> otherValue = oneValue Just like >>> myMaxFunction = max

numbers &

>>> oneValue strings >>> max(16,100)

‘abc’ 100

>>> otherValue >>> myMaxFunction(10,160)

‘abc’ 100

Memory diagram

. ' Memory diagram
oneValue ——— "abc

/ max

myMaxFunction

otherValue ~

Built-in functions: id

This function displays the memory address where a value is stored.

>>> id(oneValue)
4526040688

>>> id(otherValue)
4526040688

—

—

Different names can
refer to the same
value in memory.

=

"~ >>> id(max)
4525077120

>>> id(myMaxFunction)

—4525077120

Built-in functions: type

* Each Python value has a type. It can be queried with the built-in type function.
* Types are special kinds of values that display as <class 'typeName’>
* Khnowing the type of a value is important for reasoning about expressions containing the value.

In [...] Out [...]
type (123) int
tvpe (3.141) float
type(4 + 5.0) float
type ('CS111') str
type('111") str
type (11/4) float
type (11//4) int
type (11%4) int
type (11.0%4) float
type (max (7, 3.4)) int
X = min(7, 3.4) # x gets 3.4
type (X) float

type('Hi,' + 'you!') str
type (max) builtin function or method
type (type (111)) type # Special type for types!

Built-in functions: type

>>> type(10)
<class 'int'>

>>> type('abc')
<class 'str'>

>>> type(10/3)
<class 'float'>

>>> type(max)
<class 'builtin_function_or_method'> :]__

Functions are wvalues
>>> type(len) with this type

<class 'builtin_function_or_method'>

>>> type(True) o

<class 'bool'>

>>> type([1,2,3]) = Other types we wil:!.
<class 'list'> learn about later in
_— type((l@,S)) the semester

<class 'tuple'> —

Built-in functions: len

When applied to a string, the built-in 1en function returns the number of characters in the string.
Len raises a TypeError if used on values (like numbers) that are not sequences. (We’ll learn about
sequences later in the course.)

In[...] Out [...]
len('CS111"') 5
len('CS111 rocks!') 12
len('com' + 'puter') 8
course = 'computer programming'
len (course) 20
len(111) TypeError
len('111") 3
len(3.141) TypeError

len('3.141"') 5

Built-in functions: str

The str built-in function returns a string representation of its argument.
It 15 used to create string values from ints and £loats (and other types of values we will meet later) to use

in expressions with other string values.

In [...] Out[...]
str('Cs111') 'CS111'
str(17) 17!
str(4.0) '4.0'

'CS' + 111 TypeError
'CS' + str(111) 'CsS1l1l1l’
len(str(111)) 3

len(str(min(111, 42))) 2

Built-in functions: int

o When given a string that’s a sequence of digits, optionally preceded by +/-, int returns the
corresponding integer. On any other string it raises a ValueError (correct type, but wrong value of that
type).

o When given a float, int return the integer the results by truncating it toward zero.

o When given an integer, int returns that integer.

In [...] Out [...]
int('42") 42

int('-273") -273

123 + '427 TypeError

123 + int('42") 165

int('3.141") ValueErro:l} # strings are not sequence
int('five') ValueError # of chars denoting integer
int(3.141) 3

int (98.6) 98 W # Truncate floats toward O
int(-2.978) -2

int (42) 42

int (-273) -273

Built-in functions: float

o When given a string that’s a sequence of digits, optionally preceded by +/-, and optionally including one decimal point,
float returns the corresponding floating point number. On any other string it raises a ValueError.
o When given an integer, £loat converts it to floating point number.

o When given a floating-point number, £loat returns that number.

In [...] Out [...]
float('3.141") 3.141
float('-273.15") -273.15
float('3") 3.0
float('3.1.4") ValueError
float('pi') ValueError
float (42) 42 .0

float (98.6) 98.6

Built-in functions: round

o When given one numeric argument, round returns the integer it’s closest to.
o When given two arguments (a numeric argument and an integer number of decimal places), round
returns floating point result of rounding the first argument to the number of places specified by the second.

o In other cases, round raises a TypeError

round(1.3 - 1.0, 1)
round(2.3 - 2.0, 1)

In [...] Out [...]
round(3.14156) 3
round (98.6) 99
round (—-98.6) -99
round (3.5) 4}
always rounds up for 0.5

round(4.5) 5
round(2.718, 2) 2.72
round(2.718, 1) 2.7
round(2.718, 0) 3.0

0.

0.

3
3} # Compare to previous slide

Built-in functions: print

print displays a character-based representation of its argument(s) on the screen and returns a special

None value.

Note that print also does not display any quotation marks for strings.

Console

print (7)

print('ME444")
print(len(str('ME444')) * min(17,3))
college = 'Gaziantep'

print('I go to ' + college)

dollars = 10

print ('The movie costs §'

+ str(dollars) + '.'")

?
ME444

15

I go to Gaziantep University
The movie costs $10.

The newline character ' \n'

"\n'is a single special newline character. Printing it causes the console to shift to the next line.

In[...] Console
print ('one\ntwo\nthree') one
two

three

Print with multiple arguments

When print is given more than one argument, it prints all arguments, separated by one space by default.
This is helpful for avoiding concatenating the parts of the printed string using + and using str to convert

non strings to strings.

In [...] Console

print(6,'*',7,'=",6%7) 6 * 7 = 42
print with one argument is much

more complicated in this example!
print(str(6)+' * '+str(7)+' = '+str(6*7)) 6 * 7 = 42

Print with the sep keyword argument

Print can take an optional so-called keyword argument ot the form sep=stringl alue that uses stringl alne to
replace the default space string between multiple values.

In[...] Console
print(6,'*',7,'="',6%7) 6 * 7 = 42

replace space by $
print(6,'*',7,'=',6%7,sep="5") 65*575=542

replace space by two spaces

print(6,'*',7,'=',6%7,sep=" ') 6 * 7 = 42

replace space by zero spaces
print(6, '*',7,'=",6%*7 ,sep="") 6*7=42

replace space by newline
print(6,'*',7,'=",6%*7 ,sep="'\n")

I <9 * o

Complex Expression Evaluation

o An expression is a programming language phrase that denotes a value. Smaller sub-expressions can be
combined to form arbitrarily large expressions.

o Complex expressions are evaluated from “inside out”, first finding the value of smaller expressions, and then
combining those to yield the values of larger expressions. See how the expression below evaluates to '35"':

str((3 + 4) * len('C' + 'S'" + str(max (110, 111))))
L_j__J l J | J
| |
7 'CS' 111

\ J
|

'111"' # str(111)

\ J
|

'CsS111' # 'CS’4—‘11H‘

|
5 # len('CS111')]

!
35 #7 * 5

|
135" # str(35)

Mote print examples

In [4]: print('one\ntwo\three') # '\n' is a single special
newline character.

one

& # Printing it causes the
wo # display to shift to the
three # next line.

In [5]: print('one', 'two', 'three’, sep='\n')
one # Like previous example,
but use sep keyword arg

two .
for newlines

three

In [6]: str(print(print('CS'), print('Cs')))

CS # printed by 274 print

111 # printed by 3*¢ print.

None None # printed by 1°* print; shows that print returns None

Out [6]: 'None' # result of str; shows that print returns None

Mote print examples

message="Welcome to ME444"

message
'"Welcome to ME444'?

print (message)
Welcome to ME444

print (10+20)
30

print (max(10,20))
20

max (10,20)
20
a=print (max(10,20))
20
a+20
Traceback (most recent call last):
File "<pyshell#1l1l>", line 1, in <module>
a+20

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

\ Be caretul, print converts the arguments to string!

Built-in functions: input

input displays its single argument as a prompt on the screen and waits for the user to input text, followed

by Enter/Return. It returns the entered value as a string.

In [7]: input('Enter your name: ')
Enter your name: Olivia Rodrigo

In [8]: age = input('Enter your age: ')

Enter your age:20

In [9]: age <« ---------- ~ No output trom assignment.

Out [9]: '20'
- Value returned by input is always a string.

Convert it to a numerical type when needed.

In [10]: age + 4 Tried to add a string and a tloat.
TypeError

Built-in functions: input

In [11]: age
Enter your age: 18 T e~

flanﬁinput('Enter your age: '))

—

~~-- Example of nested function calls.
In [12]: age + 4

Out [12]: 22.0
-

~
~
~

~._age contains £loat ('18'), which1s18.0
and 18.0 + 41s22.0

Expressions VS.

Phrases that produce a value. E.g. :

10

10 * 20 - 100/25

max (10, 20)
int("100") + 200

fav

fav + 3

"pie" + " in the sky"

Expressions are composed out of
any combination ot values, variables

operations, and function calls.

Statements

Phrases that perform an action /
change the state of the program

(can be visible, invisible, or both):
print (10)

age = 19
teleport (0, 150)
Statements may contain expressions,

which are evaluated before the action is
performed.

print('She is ' + str (age)
+ ' years old.’)

We'll consider expressions that return a
None value to be kinds of statements.

Putting Python code in a .py file

Rather than interactively entering code into the Python Shell, we can enter it in the Editor Pane, where we
can edit it and save it away as a file with the .py extension (a Python program). Here is a nameage . py
program. Lines beginning with # are comments We run the program by pressing the triangular “run”/play

button.

A a.py - C/Users/N.Furkan/Desktop/a.py (3.13.7) — | e

File Edit Format Run Options Window Help

#Part 1: Gather personal informations
name=input ('Enter your name:')
age=input('Enter your age:')

#Convert age from str to integer
age=int (age)

#Part 2: Output the results by concantaneting the strings with variab
#values that store user data.

print("Hello, "+ name + ".")
print ("In 4 years, you'll be "+str(age+d)+" years old.")

Ln: 11 Col: 56

Enter your name:Furkan

Enter your age:37

Hello, Furkan.

In 4 years, you'll be 41 years old.
|

Error messages in Python

Type Errors

'111' + 5 TypeError: cannot concatenate 'str' and 'int' values
len(111) TypeError: object of type 'int' has no len()

Value Errors

int('3.142') ValueError: invalid literal for int() with base 10: '3.142"
float('pi') ValueError: could not convert string to float: p1

Name Errors

CS + '111' NameError: name 'CS'is not defined

Syntax Etrors A syntax error indicates a phrase is not well formed according to the rules of the Python
language. E.g. a number can’t be added to a statement, and variable names can’t begin with

digits.
1 + (ans=42) ' 2ndvalue = 25
1 + (ans=42) i 2ndvalue = 25

ESyntaxError: invalid syntax ﬁSyntaxError: invalid syntaxi

__

Test your knowledge

(2

Create simple expressions that combine values of ditterent types and
math operators.

Which operators can be used with string values? Give examples of
expressions involving them. What happens when you use other operators?
Wirite a tew assignment statements, using as assigned values either
literals or expressions. Experiment with different variable names that
start with ditferent characters to learn what 1s allowed and what not.
Perform different function calls of the built-in functions: max, min,
id, type, 1len, str,int, £float, round.

Create complex expressions that combine variables, tunction calls,
operators, and literal values.

Use the tunction print to display the result of expressions involving
string and numerical values.

Wirite simple examples that use input to collect values from a user and
use them in simple expressions. Remember to convert numerical values.
Create situations that raise ditterent kinds of errors: TypeError,
ValueError, NameError, and SyntaxError.

	Slayt 1
	Slayt 2
	Slayt 3: Introduction to Python Language
	Slayt 4
	Slayt 5
	Slayt 6: Strings and concatenation
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33
	Slayt 34

