
P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

P
Y
T
H
O
N

Introduction to Python
Language

Prepared based on the slides from the Computer Programming lecture slides of Wellesley College.

Python Intro Overview

o Values: 10 (integer),

3.1415 (decimal number or float),

‘GAZİANTEP' (text or string)

o Types: numbers and text: int, float, str

type(10)

type(‘gaziantep')

o Operators: + - * / % =

o Expressions: (they always produce a value as a result)

'abc' + 'def’ -> 'abcdef'

Simple Expressions: Python as calculator

Input Expressions

In [...]

Output Values Out

[…]

1+2

3*4

3 * 4

3.4*5.67

2 + 3*4

(2+3)*4

11 / 4

11 // 4

11 % 4

5 - 3.4

3.25 * 4

11.0// 2

5// 2.25

5 % 2.25

3

12

12

19.278

14

20

2.75

2

3

1.6

13.0

5.0

2.0

0.5

Spaces don't matter

Floating point (decimal) operations

Precedence: * binds more tightly than +

Overriding precedence with parentheses

Floating point (decimal) division

Integer division

Remainder (often called modulus)

output is float if at least one input is float

Strings and concatenation

A string is just a sequence of characters that we write between a pair of double quotes or a pair of single

quotes. Strings are usually displayed with single quotes. The same string value is created regardless of

which quotes are used.

In [...] Out […]

"ME444"

'rocks!'

'You say "Hi!"'

"No, I didn’t"

"ME444 " + 'rocks!’

'123' + '4'

123 + 4

'123' + 4

'123' * 4

'123' * '4'

'ME444'

'rocks!'

'You say "Hi!"’

"No, I didn’t"

‘ME444 rocks!’

'1234'

127

TypeError

'123123123123’

TypeError

Characters in a string

can include spaces,

punctuation, quotes

String concatenation

Strings and numbers

are very different!
Can’t concatenate strings & num.

Repeated concatenation

Memory Diagram Model:

Variable as a Box
o A variable is a way to remember a value for later in the computer’s memory.

o A variable is created by an assignment statement, whose form is

varName = expression

Example: ans = 42 # ans is the varName, 42 is the expression saved in ans

This line of code is executed in two steps:

1. Evaluate expression to its value val

2. If there is no variable box already labeled with varName, create a new box

labeled with varName and store val in it; otherwise, change the contents of the existing box

labeled varName to val.

Memory Diagram Model:

Variable as a Box

o How does the memory diagram change if we evaluate the following expression?

ans = 2*ans+27

o The expression checks the most recent valof ans(42), re-evaluates the new expression

based on that value, and reassigns the value of ans accordingly.

o ans = 2*42+27

o ans = 111

Variable Examples

Variable Examples

Built-in Functions

Built-in Functions: max and min functions

Python has many built-in functions that we can use. Built-in functions and user-defined variable and function

names names are highlighted with different colors in the compiler.

The inputs to a function are called its arguments and the function is said to be called on its arguments. In

Python, the arguments in a function call are delimited by parentheses and separated by commas.

Understanding variable and function names

One value can have multiple names. These names refer to the same value in the computer memory. See the

examples below for variables and functions.

Built-in functions: id

This function displays the memory address where a value is stored.

Built-in functions: type

• Each Python value has a type. It can be queried with the built-in type function.

• Types are special kinds of values that display as <class 'typeName’>

• Knowing the type of a value is important for reasoning about expressions containing the value.

Built-in functions: type

Built-in functions: len
When applied to a string, the built-in len function returns the number of characters in the string.

Len raises a TypeError if used on values (like numbers) that are not sequences. (We’ll learn about

sequences later in the course.)

Built-in functions: str
The str built-in function returns a string representation of its argument.

It is used to create string values from ints and floats (and other types of values we will meet later) to use

in expressions with other string values.

Built-in functions: int
o When given a string that’s a sequence of digits, optionally preceded by +/-, int returns the

corresponding integer. On any other string it raises a ValueError (correct type, but wrong value of that

type).

o When given a float, int return the integer the results by truncating it toward zero.

o When given an integer, int returns that integer.

Built-in functions: float

o When given a string that’s a sequence of digits, optionally preceded by +/-, and optionally including one decimal point,

float returns the corresponding floating point number. On any other string it raises a ValueError.

o When given an integer, float converts it to floating point number.

o When given a floating-point number, float returns that number.

Built-in functions: round

o When given one numeric argument, round returns the integer it’s closest to.

o When given two arguments (a numeric argument and an integer number of decimal places), round

returns floating point result of rounding the first argument to the number of places specified by the second.

o In other cases, round raises a TypeError

Built-in functions: print
print displays a character-based representation of its argument(s) on the screen and returns a special

None value.

Note that print also does not display any quotation marks for strings.

Console

The newline character '\n'

'\n'is a single special newline character. Printing it causes the console to shift to the next line.

Print with multiple arguments

When print is given more than one argument, it prints all arguments, separated by one space by default.

This is helpful for avoiding concatenating the parts of the printed string using + and using str to convert

non strings to strings.

Print with the sep keyword argument

Print can take an optional so-called keyword argument of the form sep=stringValue that uses stringValue to

replace the default space string between multiple values.

Complex Expression Evaluation

o An expression is a programming language phrase that denotes a value. Smaller sub-expressions can be

combined to form arbitrarily large expressions.

o Complex expressions are evaluated from “inside out”, first finding the value of smaller expressions, and then

combining those to yield the values of larger expressions. See how the expression below evaluates to '35':

More print examples

More print examples

Be careful, print converts the arguments to string!

Built-in functions: input

input displays its single argument as a prompt on the screen and waits for the user to input text, followed

by Enter/Return. It returns the entered value as a string.

Built-in functions: input

Putting Python code in a .py file

Rather than interactively entering code into the Python Shell, we can enter it in the Editor Pane, where we

can edit it and save it away as a file with the .py extension (a Python program). Here is a nameage.py

program. Lines beginning with # are comments We run the program by pressing the triangular “run”/play

button.

Error messages in Python

Type Errors

'111' + 5 TypeError: cannot concatenate 'str' and 'int' values

len(111) TypeError: object of type 'int' has no len()

Value Errors

int('3.142') ValueError: invalid literal for int() with base 10: '3.142'

float('pi') ValueError: could not convert string to float: pi

Name Errors

CS + '111' NameError: name 'CS' is not defined

Syntax Errors A syntax error indicates a phrase is not well formed according to the rules of the Python

language. E.g. a number can’t be added to a statement, and variable names can’t begin with

digits.

	Slayt 1
	Slayt 2
	Slayt 3: Introduction to Python Language
	Slayt 4
	Slayt 5
	Slayt 6: Strings and concatenation
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30
	Slayt 31
	Slayt 32
	Slayt 33
	Slayt 34

