
Introduction to Python
Language

REPETITIVE STRUCTURES (LOOPS)

OBJECTIVES

o To understand the concepts of definite and indefinite loops as they

are realized in the Python for and while statements.

o To understand the programming patterns interactive loop and sentinel

loop and their implementations using a Python while statement.

o To be able to design and implement solutions to problems involving

loop patterns including nested loop structures.

o To understand the basic ideas of Boolean algebra and be able to

analyze and write Boolean expressions involving Boolean operators.

For Loops

o For loop allows us to iterate through a sequence of values.

The loop index variable var takes on each successive

value in the sequence, and the statements in the body

of the loop are executed once for each value.

o Example: Suppose we want to write a program that can compute the average of a series

of numbers entered by the user.

We can generate a design for this problem:

o We can almost totaly implement this algorithm into Python.
range() function: returns a sequence of
numbers, in a given range.

Syntax:
range(start, stop, step)

Example:

for i in range(5):

print(i, end=" ")

print()

for i in range(5, 20):

print(i, end=" ")

Indefinite Loops (while loop)

o Our averaging program is certainly functional, but it doesn't have the best user interface.

o It starts by asking to user how many numbers there are. It is OK for handful of numbers, but what

if I have a whole page of numbers to average? It might be a significant burden to go through and

count them up.

o It would be much nicer if the computer could take care of counting the numbers for us.

o Unfortunately, as you no doubt recall, the for loop (in its usual form) is a definite loop, and that

means the number of iterations is determined when the loop starts.

o An indefinite loop keeps iterating until certain conditions are met. There is no guarantee ahead of

time regarding how many times the loop will go around.

o In Python, an indefinite loop is implemented using a while statement. Syntactically, the while is

very simple:

Here condition is a Boolean expression, just

like in if statements. The body is, as usual, a

sequence of one or more statements.

Flowchart of a while loop

- The body of the loop executes repeatedly as

long as the condition remains true.

- When the condition is false, the loop

terminates.

- The condition is always tested at the top of the

loop, before the loop body is executed. This

kind of structure is called a pre-test loop.

- If the loop condition is initially false, the loop

body will not execute at all.

o Here a simple example that prints the

numbers from 0 to 10.

o This code will have the same output as if we

had written a for loop like this:

Notice that the while version requires us to take care of initializing i before the

loop and incrementing i at the bottom of the loop body. In the for loop, the loop

variable is handled automatically.

o The simplicity of the while statement makes it both powerful and dangerous.

o Suppose we forget to increment i at the bottom of the loop body in the counting example:

- What will the output from this program be? When Python gets to the

loop, i will be 0, which is less than 10, so the loop body executes,

printing a 0. Now control returns to the condition; i is still 0, so the loop

body executes again, printing a 0. Now control returns to the condition;

i is still 0, so the loop body executes again, printing a 0

- This is an example of an infinite loop.

- Usually, you can break out of a loop by pressing <Ctrl>-c (holding down the <Ctrl> key and

pressing c) . If your loop is really tight, this might not work, and you'll have to resort to more drastic

means (such as <Ctrl><Alt><Delete> on a PC) . If all else fails, there is always the trusty reset

button on your computer.

Common Loop Patterns

- One good use of the indefinite loop is to write interactive loops.

- The idea behind an interactive loop is that it allows the user to repeat certain portions of a

program on demand.

Interactive Loops

- Let's take a look at this loop pattern in the context of our number-averaging problem.

- We want to modify the program so that it keeps track of how many numbers there are. We can do

this with another accumulator-call it count-that starts at 0 and increases by 1 each time through

the loop.

- To allow the user to stop at any time, each iteration of the loop will ask whether there is more

data to process. The general pattern for an interactive loop looks like this:

- Combining the interactive loop pattern with accumulators for the total and count yields this

algorithm for the averaging program:

- Here is the corresponding Python program:
Notice this program uses string indexing

(moredata [0]) to look just at the first letter of

the user's input. This allows for varied

responses such as ''yes," ''y," ''yeah," etc. All that

matters is that the first letter is a ''y."

- Here is the output of our program:

- A better solution to the number-averaging problem is to employ a pattern commonly known as a

sentinel loop.

- A sentinel loop continues to process data until reaching a special value that signals the end. The

special value is called the sentinel.

- Any value may be chosen for the sentinel. The only restriction is that it be distinguishable from

actual data values.

- The sentinel is not processed as part of the data.

Sentinel Loops

- Here is a general pattern for designing sentinel loops:

-Notice how this pattern avoids processing the

sentinel item.

-If the first item is the sentinel, the loop immediately

terminates and no data is processed.

- We can apply the sentinel pattern to our number-averaging problem. The first step is to pick a

sentinel. We can safely assume that no score will be below 0. The user can enter a negative

number to signal the end of the data.

- Now we have a useful form of the program:

This sentinel loop solution is quite good, but there is still a limitation. The program can't be

used to average a set of numbers containing negative as well as positive values.

In order to have a truly unique sentinel, we need to broaden the possible inputs. Suppose that we

get the input from the user as a string.

- One simple solution is to have the sentinel value be an empty string. If the user types a blank

line in response to an input Gust hits <Enter>), Python returns an empty string. We can use this

as a simple way to terminate input. The design looks like this:

- Translating it into Python yields this program:

- Here is an example run, showing that it

is now possible to average arbitrary sets

of numbers:

Computing with Booleans

o In the next sections, we will develop a simulation for the game of racquetball. Part of the

simulation will need to determine when a game has ended.

o Suppose that scoreA and scoreB represent the scores of two racquetball players. The game is over

as soon as either of the players has reached 15 points.

o Here is a Boolean expression that is true when the game is over:

o When either score reaches 15, one of the two simple conditions becomes true, and, by definition

of or, the entire Boolean expression is true. As long as both conditions remain false (neither

player has reached 15) the entire expression is false.

o Our simulation will need a loop that continues as long as the game is not over.

o We can also construct more complex Boolean expressions that reflect different possible stopping

conditions.

o A game also ends when one of the players reaches 7 and the other has not yet scored a point.

o For brevity, we'll use a for scoreA and b for scoreB. Here is an expression for game-over when

shutouts are included:

Boolean Algebra

o Boolean expressions obey certain algebraic laws similar to those that apply to numeric operations.

These laws are called Boolean logic or Boolean algebra.

o The following table shows some rules of algebra with their correlates in Boolean algebra:

o From these examples, you can see that and has

similarities to multiplication, or has similarities to

addition, and 0 and 1 correspond to false and

true.

o Here are some other interesting properties of Boolean operations. Anything or ’ed with true is

just true.

o Both and and or distribute over each other.

o A double negative cancels out.

o The next two identities are known as DeMorgan's laws.

o The following table demonstrates DeMorgan's first law:

Other Common Structures: Post-test Loop

o Suppose you are writing an input algorithm that is supposed to get a nonnegative number from

the user. If the user types an incorrect input, the program asks for another value. It continues to

re-prompt until the user enters a valid value.

o This process is called input validation. Well-engineered programs validate inputs whenever

possible. Here is a simple algorithm:

The idea here is that the loop keeps getting

inputs until the value is acceptable.

Flowchart of post-test loop

o Unlike some other languages, Python does not have a statement that directly implements a post-

test loop.

o However, this algorithm can be implemented with a while by "seeding" the loop condition for the

first iteration:

This forces the loop body to execute at least once and is equivalent to the post test algorithm.

o Some programmers prefer to simulate a post-test loop more directly by using a Python break

statement.

o Executing break causes Python to immediately exit the enclosing loop.

o Often a break statement is used to leave what looks syntactically like an infinite loop.

o Here is the same algorithm implemented with a break:

o It would be nice if the program issued a warning explaining why the input was invalid. Adding a

warning to the version using break only requires adding an else to the existing if.

Other Common Structures: Loop and a Half

o Some programmers would solve the warning problem from the previous section using a slightly

different style:

- Here the loop exit is

actually in the middle of

the loop body.

- This is called a loop and a

half.

o Here is the general pattern of a sentinel loop implemented as a loop and a half:

Loop-and-a-half implementation of sentinel loop

pattern

Bool ean Expressions as Decisions

o Sometimes Boolean expressions themselves can act as control structures. Consider writing an

interactive loop that keeps going as long as the user response starts with a ''y." To allow the user

to type either an upper- or lowercase response, you could use a loop like this:

o You must be careful not to abbreviate this condition as you might think of it in English: ''While

the first letter is Y or 'Y' ". The following form does not work:

o Frequently, programs prompt users for information but offer a default value for the response.

The default value, sometimes listed in square brackets, is used if the user simply hits the <Enter>

key. Here is an example code fragment:

o Exploiting the fact that the string in ans can be treated as a Boolean, the condition in this code

can be simplified as follows:

o In fact, this task can easily be accomplished in a single line of code:

Next Lecture
Defining Functions

	Slayt 1: Introduction to Python Language
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30: Next Lecture

