Introduction to Python
Language

A

REPETITIVE STRUCTURES (LOOPS)



OBJECTIVES

o To understand the concepts of definite and indefinite loops as they
are realized in the Python for and while statements.

o To understand the programming patterns interactive loop and sentinel
loop and their implementations using a Python while statement.

o To be able to design and implement solutions to problems involving
loop patterns including nested loop structures.

o To understand the basic ideas of Boolean algebra and be able to
analyze and write Boolean expressions involving Boolean operators.



For Loops

o For loop allows us to 1terate through a sequence of values.

for <var> in <sequence>: The loop index variable var takes on each successive
<body> value in the sequence, and the statements in the body
of the loop are executed once for each value.

o Example: Suppose we want to write a program that can compute the average of a series
of numbers entered by the user.
We can generate a design for this problem:

input the count of the numbers, n
initialize total to O
loop n times
input a number, x
add x to total
output average as total / n



o We can almost totaly implement this algorithm into Python.

n = int(input("How many numbers do you have? "))

total = 0.0
for i in range(n):

x = float(input ("Enter a number >> "))

total = total + x

print ("\nThe average of the numbers is", total / n)

How many numbers do you have? 5

Enter a number >> 32
Enter a number >> 45
Enter a number >> 34
Enter a number >> 76
Enter a number >> 45

The average of the numbers is 46.4

range( ) function: returns a sequence of

numbers, in a given range.

Syntax:
range (start, stop, step)

Example:
for 1 in range (D) :

print (i, end=" ")
print ()

1234

for 1 in range (5, 20):
print (i, end=" ")

5678910 11 12 13 14 15 16 17

18 19



Indefinite Loops (while loop)

o Our averaging program is certainly functional, but it doesn't have the best user interface.

o It starts by asking to user how many numbers there are. It is OK for handful of numbers, but what
if T have a whole page of numbers to average? It might be a significant burden to go through and
count them up.

o It would be much nicer if the computer could take care of counting the numbers for us.

o Unfortunately, as you no doubt recall, the for loop (in its usual form) is a definite loop, and that
means the number of iterations 1s determined when the loop starts.

o An indefinite loop keeps iterating until certain conditions are met. There is no guarantee ahead of

time regarding how many times the loop will go around.



o In Python, an indefinite loop is implemented using a while statement. Syntactically, the while is
very simple:

i s 43 re condition is a Boolean expression, just
while <condition>: Here condition 1s a Boolean expression, jus

<body> like in 1f statements. The body i1s, as usual, a

sequence of one or more statements.

|

- The body of the loop executes repeatedly as
long as the condition remains true.
no - When the condition is false, the loop

<condition>?
terminates.

- The condition 1s always tested at the top of the
loop, before the loop body 1s executed. This
s kind of structure is called a pre-test loop.

- If the loop condition 1s initially false, the loop

body will not execute at all.

Y

Flowchart of a while loop



o Here a simple example that prints the o This code will have the same output as if we

numbers from 0O to 10. had written a for loop like this:
i=0 for i in range(11):
while i <= 10: print (i)
print (i)
i=31i+1

Notice that the while version requires us to take care of initializing 1 before the
loop and incrementing 1 at the bottom of the loop body. In the for loop, the loop
variable is handled automatically.



o The simplicity of the while statement makes it both powerful and dangerous.

o Suppose we forget to increment i at the bottom of the loop body in the counting example:

- What will the output from this program be? When Python gets to the
i=0 loop, 1 will be 0, which is less than 10, so the loop body executes,
printing a 0. Now control returns to the condition; 1 1s still 0, so the loop
body executes again, printing a 0. Now control returns to the condition;
11s still 0, so the loop body executes again, printing a 0 . . . .

- This is an example of an infinite loop.

while i <= 10:
print (i)

- Usually, you can break out of a loop by pressing <Ctrl>-c (holding down the <Ctrl> key and
pressing c) . If your loop is really tight, this might not work, and you'll have to resort to more drastic
means (such as <Ctr]><Alt><Delete> on a PC) . If all else fails, there is always the trusty reset

button on your computet.



Common Loop Patterns

Interactive Loops

One good use of the indefinite loop is to write interactive loops.

The idea behind an interactive loop 1s that it allows the user to repeat certain portions of a
program on demand.

Let's take a look at this loop pattern in the context of our number-averaging problem.

We want to modity the program so that it keeps track of how many numbers there are. We can do
this with another accumulator-call it count-that starts at 0 and increases by 1 each time through
the loop.

To allow the user to stop at any time, each iteration of the loop will ask whether there is more
data to process. The general pattern for an interactive loop looks like this:

set moredata to "yes"

while moredata is "yes"
get the next data item
process the item
ask user 1if there is moredata



- Combining the interactive loop pattern with accumulators for the total and count yields this

algorithm for the averaging program:

initialize total to 0.0
initialize count to O
set moredata to "yes"
while moredata is "yes"

input a number, x

add x to total

add 1 to count

ask user if there is moredata
output total / count



Here 1s the corresponding Python program:

total = 0.0
count = 0
moredata = "yes"

while moredata[0] == "y":

Notice this program uses string indexing
(moredata [0]) to look just at the first letter of
the wuser's input. This allows for varied

nmauw_nn

responses such as "yes," "y," "yeah," etc. All that

matters is that the first letter is a "y."

x = float(input("Enter a number >> "))

total = total + x
count = count + 1

moredata = input("Do you have more numbers (yes or no)? ")
print ("\nThe average of the numbers is", total / count)



Here is the output of our program:

Enter a number >> 32
Do you have more numbers (yes
Enter a number >> 45
Do you have more numbers (yes
Enter a number >> 34
Do you have more numbers (yes
Enter a number >> 76
Do you have more numbers (yes
Enter a number >> 45
Do you have more numbers (yes

The average of the numbers is

or

or

or

or

or

46.

no)? yes
no)? y
no)? y
no)? y

no)? nope



Sentinel Loops

A better solution to the number-averaging problem 1s to employ a pattern commonly known as a

sentinel loop.
A sentinel loop continues to process data until reaching a special value that signals the end. The
special value is called the sentinel.

Any value may be chosen for the sentinel. The only restriction is that it be distinguishable from

actual data values.

The sentinel is not processed as part of the data.



Here is a general pattern for designing sentinel loops:

get the first data item -Notice how this pattern avoids processing the

while item is not the sentinel

sentinel item.

process the item -If the first item is the sentinel, the loop immediately

get the next data item terminates and no data is processed.

We can apply the sentinel pattern to our number-averaging problem. The first step is to pick a
sentinel. We can safely assume that no score will be below 0. The user can enter a negative
number to signal the end of the data.
total = 0.0
count = 0
x = float(input("Enter a number (negative to quit) >> "))
while x >= O:
total = total + x
count = count + 1
x = float(input("Enter a number (negative to quit) >> "))
print ("\nThe average of the numbers is", total / count)



- Now we have a useful form of the program:

Enter a number (negative to quit) >> 32
Enter a number (negative to quit) >> 45
Enter a number (negative to quit) >> 34
Enter a number (negative to quit) >> 76
Enter a number (negative to quit) >> 45
Enter a number (negative to quit) >> -1

The average of the numbers is 46.4

This sentinel loop solution is quite good, but there is still a limitation. The program can't be
used to average a set of numbers containing negative as well as positive values.

In order to have a truly unique sentinel, we need to broaden the possible inputs. Suppose that we

get the input from the user as a string,



- One simple solution 1s to have the sentinel value be an empty string. If the user types a blank
line in response to an input Gust hits <Enter>), Python returns an empty string. We can use this

as a simple way to terminate input. The design looks like this:

initialize total to 0.0
initialize count to O
input data item as a string, xStr
while xStr is not empty
convert xStr to a number, x
add x to total
add 1 to count
input next data item as a string, xStr
output total / count



- Translating it into Python yields this program:

total = 0.0
count = 0

xStr =

while xStr 1= "":

x = float(xStr)
total = total + x

count = count + 1
xStr =

input ("Enter a number (<Enter> to quit) >> ")

input ("Enter a number (<Enter> to quit) >> ")

print ("\nThe average of the numbers is", total / count)

- Here is an example run, showing that it
is now possible to average arbitrary sets
of numbers:

Enter a number

Enter
Enter
Enter
Enter
Enter
Enter

a

popoPpPE

number
number
number
number
number
number

The average of

(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>
(<Enter>

to
to
to
to
to
to
to

the numbers

quit)
quit)
quit)
quit)
quit)
quit)
quit)

>>
>>
>>
>>
>>
>>
>>

is 3.38333333333




Computing with Booleans

o In the next sections, we will develop a simulation for the game of racquetball. Part of the
simulation will need to determine when a game has ended.

o Suppose that scoreA and scoreB represent the scores of two racquetball players. The game is over
as soon as either of the players has reached 15 points.

o Here 1s a Boolean expression that is true when the game 1s over:

scoreA == 15 or scoreB == 15

o When either score reaches 15, one of the two simple conditions becomes true, and, by definition
of or, the entire Boolean expression is true. As long as both conditions remain false (neither
player has reached 15) the entire expression is false.

o Our simulation will need a loop that continues as long as the game 1s not over.

while not (scoreA == 15 or scoreB == 15):
# continue playing



o We can also construct more complex Boolean expressions that reflect different possible stopping
conditions.

o A game also ends when one of the players reaches 7 and the other has not yet scored a point.

o For brevity, we'll use a for scoreA and b for scoreB. Here is an expression for game-over when
shutouts are included:

a=150or b==150or (a ==7 and b ==0) or (b == 7 and a == 0)



Boolean Algebra

o Boolean expressions obey certain algebraic laws similar to those that apply to numeric operations.
These laws are called Boolean logic or Boolean algebra.
o The following table shows some rules of algebra with their correlates in Boolean algebra:

algebra Boolean algebra o From these examples, you can see that and has
a*0=0 a and false == false similarities to multiplication, or has similarities to
e*l=a aandtrue==a addition, and 0 and 1 correspond to false and
a+0=a aorfalse == true.

o Here are some other interesting properties of Boolean operations. Anything or ’ed with true is
just true.

( a or True ) == True

o Both and and or distribute over each other.

(aor (band c) ) == ( (a or b) and (a or c) )
(aand (borc) ) == ( (a and b) or (a and c) )



o A double negative cancels out.

( not (not a) ) == a

o The next two identities are known as DeMorgan's laws.

( not(a or b) ) == ( (not a) and (not b) )
( not(a and b) ) == ( (not a) or (not b) )

o The following table demonstrates DeMorgan's first law:

a/b|aor b|not (a or b) | not a | not b| (not a) and (not b)
T | T T F F F F
T | F T F F T F
F|T T F T F F
F|F F T T T T




Other Common Structures: Post-test Loop

o Suppose you are writing an input algorithm that is supposed to get a nonnegative number from
the user. If the user types an incorrect input, the program asks for another value. It continues to

re-prompt until the user enters a valid value.
o This process 1s called input validation. Well-engineered programs validate inputs whenever

possible. Here is a simple algorithm:

repeat
get a number from the user
until number is >= 0

Get a number

The 1dea here 1s that the loop keeps getting
inputs until the value is acceptable.

no

Flowchart of post-test loop



o Unlike some other languages, Python does not have a statement that directly implements a post-

test loop.
o However, this algorithm can be implemented with a while by "seeding" the loop condition for the
first iteration:

number = -1 # Start with an illegal value to get into the loop.
while number < O:
number = float(input("Enter a positive number: "))

This forces the loop body to execute at least once and 1s equivalent to the post test algorithm.

o Some programmers prefer to simulate a post-test loop more directly by using a Python break
statement.

o Executing break causes Python to immediately exit the enclosing loop.

o Often a break statement is used to leave what looks syntactically like an infinite loop.

o Here is the same algorithm implemented with a break:

while True:
number = float(input("Enter a positive number: "))
if number >= 0: break # Exit loop if number is wvalid.



o It would be nice if the program issued a warning explaining why the input was invalid. Adding a
warning to the version using break only requires adding an else to the existing if.

while True:
number = float(input("Enter a positive number: "))
if number >= O:
break # Exit loop if number is valid.
else:
print ("The number you entered was not positive")



Other Common Structures: Loop and a Half

o Some programmers would solve the warning problem from the previous section using a slightly
different style:

while True:

- Here the loop exit is
number = float(input("Enter a positive number: "))

actually 1n the middle of

if number >= 0: break # Loop exit the loop body.
print ("The number you entered was not positive") - This is called a loop and a
half.

o Here is the general pattern of a sentinel loop implemented as a loop and a half:

while True:
get next data item
if the item is the sentinel: break
process the item



P

\

while True:
get next data item
if the item is the sentinel: break
process the item

Get next Data item

yes

no

Process the item

:

Loop-and-a-half implementation of sentinel loop

patter n



Bool ean Expressions as Decisions

o Sometimes Boolean expressions themselves can act as control structures. Consider writing an
interactive loop that keeps going as long as the user response starts with a "y." To allow the user
to type either an upper- or lowercase response, you could use a loop like this:

while response[0] == "y" or response[0Q] == "Y": \/

o You must be careful not to abbreviate this condition as you might think of it in English: "While
the first letter is Y or "Y' ". The following form does not work:

while response[0] == "y" or "Y": )¢



o Frequently, programs prompt users for information but offer a default value for the response.

The detault value, sometimes listed in square brackets, is used if the user simply hits the <Enter>
key. Here is an example code fragment:

ans = input("What flavor do you want [vanilla]: ")
if ans = "":

flavor = ans
else:

flavor = "vanilla"

Exploiting the fact that the string in ans can be treated as a Boolean, the condition in this code
can be simplified as follows:

ans = input("What flavor do you want [vanilla]: ")
if ams:

flavor = ans
else:

flavor = "vanilla"



o In fact, this task can easily be accomplished in a single line of code:

flavor = input("What flavor do you want [vanilla]: ") or "vanilla"



Next Lecture

Defining Functions



	Slayt 1: Introduction to Python Language
	Slayt 2
	Slayt 3
	Slayt 4
	Slayt 5
	Slayt 6
	Slayt 7
	Slayt 8
	Slayt 9
	Slayt 10
	Slayt 11
	Slayt 12
	Slayt 13
	Slayt 14
	Slayt 15
	Slayt 16
	Slayt 17
	Slayt 18
	Slayt 19
	Slayt 20
	Slayt 21
	Slayt 22
	Slayt 23
	Slayt 24
	Slayt 25
	Slayt 26
	Slayt 27
	Slayt 28
	Slayt 29
	Slayt 30: Next Lecture

