Shearing Stresses in Beams
and
Thin-Walled Members

Part |l



Shearing Stresses In Thin-walled Members

* The longitudinal shear and horizontal shear per unit length (shear flow) are used in
this section to calculate both the shear flow and the average shearing stress in
thin-walled members such as the flanges of wide-flange beams, box beams, or the
walls of structural tubes
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e Consider a segment of length Ax of a wide-flange beam where V is the vertical shear in the
transverse section shown. Detach an element ABB'A’ of the upper flange. The longitudinal

shear AH exerted on that element can be obtained as y
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* Dividing AH by the area AA = tAx of the cut, the average shearing stress exerted on the

element is the same expression obtained in the previous course for a horizontal cut:

49,
Tave = 7



R

y

-

T~

Y

N.A.

* Note that 7,4, NnOw represents the average value of the shearing
stress 7,, over a vertical cut, but since the thickness t of the

flange is small, there is very little variation of 7, across the cut.

* Recalling that 7,, = 7,,, the horizontal component 7,, of the
shearing stress at any point of a transverse section of the flange

: 14 : :
can be obtained from 7,,, = I—f, where @ is the first moment of

the shaded area about the neutral axis.
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* A similar result was obtained for the vertical component 7., of the

shearing stress in the web.

14 : : :
* Tape = I—tQ can be used to determine shearing stresses in box beams,

half pipes, and other thin-walled members, as long as the loads are

applied in a plane of symmetry.
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* In each case, the cut must be perpendicular to the surface of the

VQ .. :
member, and T, = 1_1(52 will yield the component of the shearing stress

in the direction tangent to that surface.

 The other component is assumed to be equal to zero, because of the

proximity of the two free surfaces.



AL

* Comparing q =

Q
I

VaQ

T the product of the shearing stress T at a given point of the

and T pe =

section and the thickness t at that point is equal to q.

* Since V and I are constant, g depends only upon the first moment Q and easily can be sketched on

the section.

D

* For a box beam, g grows smoothly from zero at A to a maximum value at C

and C’ on the neutral axis and decreases back to zero as E is reached.
B.f

* There is no sudden variation in the magnitude of g as it passes a corner at
B, D, B’, or D’, and the sense of g in the horizontal portions of the section
is easily obtained from its sense in the vertical portions (the sense of the

D’ shear V).
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In a wide-flange section, the values of g in portions AB and A’'B

of the upper flange are distributed symmetrically.

At B in the web, g corresponds to the two halves of the flange,
which must be combined to obtain the value of g at the top of

the web.

After reaching a maximum value at C on the neutral axis, g
decreases and splits into two equal parts at D, which corresponds

at D to the two halves of the lower flange.

The shear per unit length g is commonly called the shear flow
and reflects the similarity between the properties of g just
described and some of the characteristics of a fluid flow through

an open channel or pipe.



Shear Flow in Common Thin-Walled Members




Example

The thin-walled box beam in figure is
subjected to a shear of 200 kN. Determine
the variation of the shear flow throughout
the cross section.




Solution

1
1= (0.05 m)(0.175 m)*+2[(0.125 m)(0.025 m)(0.0875 m)?*] = 70.18(107°) m*
A.F

I/ Op=75'A =0
At pointB. N A sincey’ =0
qgp = 0
0025 m 6125 m Oc = y'A = (0.0875 m)(0.125 m)(0.025 m)
_L . C - - . * *
- [— o
At point C 0.0875 m = 0.27344(10 )m
"N A
I
0.1 m
|4
: | qczé( ?C) — 390 kN/m

0.025m' 0.1m



Solution

Op=2y'A'=2 7

+[0.0875 m](0.125 m)(0.025 m)

0.125 _
— m-— (0.0875 m)(0.0ZS m)(0.0875 m)

0.0875 m (0.0875 m
At point D. N |

A
= 0.4648(107°) m’
|4
0 = ;( = ) — 662 kN/m
390 kN/m
ek |
é_; ;_% 662 kKN/m Using these results, and the
y H—/ A symmetry of the cross
Ei {g section, the shear-flow
|t ] | distribution is
L — 390 kN/m




Sample Problem 6.3

f_f='l=-77“i"- e Knowing that the vertical shear is 50 kips in a W10 X 68 rolled-steel beam,
T - | 3 | — determine the horizontal shearing stress in the top flange at a point a located 4.31
5_2]-1]_1 : -?_ML_Hﬁm in. from the edge of the beam. The dimensions and other geometric data of the
J y ol rolled-steel section are given in
10.4 in. C Appendix C.
0 = (4.31in.)(0.770 in.)(4.815 in.) = 15.98 in3

I, = 394 in*

vQ _ (50Kkips)(15.98in3) _ :
It (394in3)(0.770 in.) =T =2.63 ksi

T =



Unsymmetric Loading Of Thin-walled Members and Shear Center

* Our analysis of the effects of transverse loadings has been limited to members

possessing a vertical plane of symmetry and to loads applied in that plane.

- e | * The members were observed to bend in the plane of loading, and in any given

EE— cross section, the bending couple M and the shear V were found to result in

normal and shearing stresses:

My VaQ
. O, = —T and Tave = F

M




* In this section, the effects of transverse loads on thin-walled
/’" members that do not possess a vertical plane of symmetry are
examined.

* Assume that the channel member has been rotated through 90° and
that the line of action of P still passes through the centroid of the end
section.

* The couple vector M representing the bending moment in a given
cross section is still directed along a principal axis of the section, and
the neutral axis will coincide with that axis.

My .
M * Oy = —— can be used to compute the normal stresses in the

|
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section. However, Tgy,, = —= cannot be used to determine the

shearing stresses, since this equation was derived for a member
(V=P M = Px) possessing a vertical plane of symmetry.



e Actually, the member will be observed to bend and twist under the
applied load, and the resulting distribution of shearing stresses will be

ve

quite different from that given by 74, = ot

* |s it possible to apply the vertical load P so that the channel member of

figure will bend without twisting?

* If so, where should the load P be applied?
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* If the member bends without twisting, the shearing stress at any point of a given cross section can be

: 14 : : : :
obtained from 7, = I—f, where Q is the first moment of the shaded area with respect to the neutral axis

and the distribution of stresses is as shown with T = 0 at both A and E.
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* The shearing force exerted on a small element of cross-sectional area dA = tds is dF = tdA = ttds or

dF = qds, where q is the shear flow g = 1t = VQ/,. The resultant of the shearing forces exerted on the

elements of the upper flange AB of the channel is a horizontal force F of magnitude

B

F=fqu

A

* Because of the symmetry of the channel section about its neutral axis, the resultant of the shearing forces

exerted on the lower flange DE is a force F' of the same magnitude as F but of opposite sense.
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* The resultant of the shearing forces exerted on the web BD must be equal to the vertical shear V in the

section:
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* The forces F and F' form a couple of moment F X h, where h is the distance between the center lines
of the flanges AB and DE. This couple can be eliminated if the vertical shear V is moved to the left

through a distance e so the moment of I/ about Bis equalto F X h. Thus,V Xe =F X hor

_ Fh
=V



 When the force P is applied at a distance e to the left of the center line of the web BD, the member

bends in a vertical plane without twisting.

* The point O where the line of action of P intersects the axis of symmetry of the end section is the shear

center of that section.
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* In the case of an oblique load P, the member will also be free of twist if the load P is applied at the shear
center of the section.
* The load P then can be resolved into two components P, and P, neither of which causes the member to

twist.
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