ME 209 NUMERICAL METHODS 2nd EXAM OUESTIONS

Name Surname: 26.12.2023 **Student No: Duration: 90 min**

1. (35p) The following data give the viscosity at several different temperatures:

T (°C)	5	20	30	50	55	
μ (mPa.s)	80	15	9	6	5.5	

- a) Find the corresponding viscosity μ at T = 40 °C with linear interpolation.
- **b)** Find the corresponding viscosity μ at T = 40 °C with quadratic interpolation.
- 2. (30p) Fit a straight line to the x and y values in the given table:

x	1	2	3	4	5	6	7	_
y	0.5	2.5	2.0	4.0	3.5	6.0	5.5	

3. (35p) A jet fighter's position on an aircraft carrier's runway was timed during landing:

<i>t</i> (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
x(m)	153	185	208	249	261	271	273

where x is the distance from the end of the carrier. Determine the value of

- a) velocity (dx/dt), and
- **b)** acceleration (dv/dt) at time t=1.5 s using numerical differentiation.

SOME OF THE IMPORTANT FORMULATIONS

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_0 = f(x_0) \qquad b_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \qquad b_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}$$

$$y = a_0 + a_1 x$$
 $a_0 = \bar{y} - a_1 \bar{x}$ $a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$ \bar{y} and \bar{x} are the means of y and x , respectively.

$$\frac{df(x)}{d(x)} \approx \frac{-f(x+2\Delta x)+4f(x+\Delta x)-3f(x)}{2\Delta x} \qquad \frac{d^2f(x)}{dx^2} \approx \frac{f(x+2\Delta x)-2f(x+\Delta x)+f(x)}{(\Delta x)^2}$$