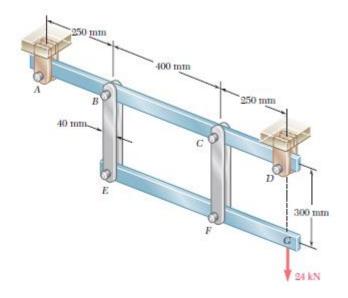
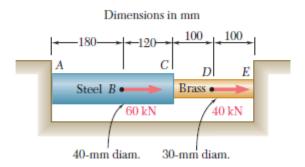

## AE 205- Strength of Materials- I

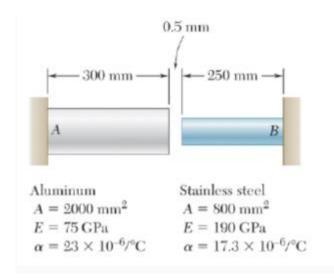
## **Problem Hour**


Q1) Each of the four vertical links has an 8x36-mm uniform rectangular cross section and each of the four pins has a 16-mm diameter. Determine the maximum value of the average normal stress in the links connecting (a) points B and D, (b) points C and E.




2) Link AB is to be made of a steel for which the ultimate normal stress is 450 MPa. Determine the cross-sectional area of AB for which the factor of safety will be 3.50. Assume that the link will be adequately reinforced around the pins at A and B.




Q3) Each of the four vertical links connecting the two rigid horizontal members is made of aluminum (E=70 GPa) and has a uniform rectangular cross section of 10x40 mm. For the loading shown, determine the deflection of (a) point E, (b) point F, (c) point G.



**Q4)** Two cylindrical rods, one of steel and the other of brass, are joined at C and restrained by rigid supports at A and E. For the loading shown and knowing that Es=200 GPa and Eb=105 GPa, determine (a) the reactions at A and E, (b) the deflection of point C.



**Q5)** At room temperature (20°C) a 0.5 mm gap exist between the ends of the rod shown. At a later time when the temperature has reached 140°C, determine (a) the normal stress in the aluminum rod, (b) the change in the length of the aluminum rod.

