EXPERIMENT 6 TRANSIENT BEHAVIOUR OF RLC CIRCUITS

EXPERIMENTAL WORK

E1 Setup the circuit given in Figure 1.

Adjust R to each of the values given below,

- _{a)} Overdamped case $R=4R_c=2200$
- b) Critically damped case $R=R_c=550$
- c) Underdamped case $R=0.25R_c=125$

In each cases, plot $v_R(t)$, $v_c(t)$, $v_L(t)$ and input v1 using oscilloscope and sketch them one under other using a graph paper. Observe the variation of each response carefully and try to understand the main differences between the overdamped, critically damped and underdamped cases.

REMARK: Set frequency of the square wave to a value so that any response could be easily measured $(f=100 \text{ Hz}, V_m=5V)$. Note the effect of changing signal frequency.

Figure 1 RLC circuit to be setup for E1

E2 Setup the circuit shown in Figure 2, observe and sketch the state trajectories for each cases given in E1

CONCLUSION

C1 What are the main differences between the responses observed for the three types of dampings in the series RLC circuit.

C2 In E2, you observed different types of trajectories. What is your conclusion about these trajectories for overdamped, underdamped and critically damped cases.