EEE 447 MICROPROCESSOR LABORATORY

EXPERIMENT 5 - TIMERS

Objective: In this experiment, it is aimed to learn Timer programming for PIC18F452 in C language.

Theory

The PIC18F452 has 4 timers referred to as Timer 0,1,2,3 and 4. They can be used either as timers to
create a time delay or as counters to count events happening outside the microcontroller. Every timer needs a
clock pulse to tick. The clock source can be internal or external. If we use the internal clock source, then
1/4th of the frequency of the crystal oscillator on the OSC1 and OSC2 pins (Fosc/4) is fed into the timer. By
choosing the external clock option, we feed pulses through one of the PIC18F452’s pins: this is called a
counter. In this experiment we discuss the PIC18 timer.

Many of the PIC18 timers are 16 bits wide. Because the PIC18 has an 8-bit architecture, each 16-bit
timer is accessed as two separate registers of low byte (TMRxL) and high byte (TMRxH). Each timer also
has the TCON(timer control) register for setting modes of operation.

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the TOCS bit. In Timer mode, the Timer0 module will increment
every instruction cycle (without prescaler). If the TMROL register is written, the increment is inhibited for
the following two instruction cycles. The user can work around this by writing an adjusted value to the
TMROL register.

Counter mode is selected by setting the TOCS bit. In Counter mode, Timer(O will increment, either on
every rising or falling edge of pin RA4/TOCKI. The incrementing edge is determined by the Timer0 Source
Edge Select bit (TOSE). Clearing the TOSE bit selects the rising edge.

TMROH TMROL
_/\ /\
s Y N
D15(D14[D13{D12|D11(D10|(D9 | D8 | D7 | D6 [D5 | D4 (D3 {1 D2 | D1 | DO
TABLE 10-1: REGISTERS ASSOCIATED WITH TIMERO
Value on Value on
Name Bit7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 POR. BOR All Other
’ RESETS
TMROL Timer0 Module Low Byte Register XXXX XXXX | uuuu uuuu
TMROH | TimerO Module High Byte Register 0000 0000 | D000 0000
INTCON | GIE/GIEH | PEIE/GIEL | TMROIE | INTOIE RBIE | TMROIF | INTOIF RBIF 0000 000x | D000 000u
TOCON TMROON TO8BIT TOCS TOSE PSA TOPS2 | TOPS1 | TOPSO | 1111 1111 | 1111 1111
TRISA — PORTA Data Direction Register -111 1111 | -111 1111

Legend:

x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

REGISTER 10-1: TOCON: TIMERO CONTROL REGISTER

RW-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1
TMROON | ToaBIT ToCSs TOSE PSA ToPS2 | TOPSH ToPS0
bit 7 bit 0

bit 7 TMROON: Timer0 On/Off Control bit
1 = Enables Timer0
0 = Stops Timer0
bit & TO8BIT: Timer0 8-bit/16-bit Control bit
1 = Timer0 is configured as an 8-bit timer/counter
0 = Timer0 is configured as a 16-bit timer/counter
bit 5 TOCS: Timer0 Clock Source Select bit
1 = Transition on TOCKI pin
0 = Internal instruction cycle clock (CLKO)
bit 4 TOSE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on TOCKI pin
0 = Increment on low-to-high transition on TOCKI pin
bit 3 PSA: Timer0 Prescaler Assignment bit
1 = Tlmer0 prescaler is NOT assigned. Timer0 clock input bypasses prescaler.
0 = Timer0 prescaler is assigned. Timer0 clock input comes from prescaler output.
bit2-0 TOPS2:TOPSO0: Timer0 Prescaler Select bits
111 = 1:256 prescale value
110 = 1:128 prescale value
101 = 1:64 prescale value
100 = 1:32 prescale value
011 = 1:16 prescale value
010 =1:8 prescale value
001 =1:4 prescale value
000 =1:2 prescale value

Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR 1" = Bit is set '0" = Bit is cleared % = Bit is unknown

Step to program Timer0 in 16-bit mode

1. Load the value into the TOCON register indicating which mode (8-bit or 16-bit mode) is to be used and
the selected prescaler option.

2. Load register TMROH followed by register TMROL with initial count values.
3. Start the timer

4. Keep monitoring the timer flag (TMROIF) to see if it is raised. Get out of the loop when TMROIF
becomes high.

5. Stop the timer.
6. Clear the TMROIF flag for the next round.

7. Go back to step 2 to load TMROH and TMROL again.

Experimental Work

Ex.1: Write a C program to toggle all the bits of PORTC continuously every 1s. Use TimerO,
16 bit mode, and the 1:256 prescaler to create the delay.

Ex.2: Write a C program to toggle only the PORTC.3 bit continuously every 4s . Use TimerO,
16-bit mode, the 1:256 prescaler to create the delay.

