
EEE 447 MICROPROCESSOR LABORATORY

EXPERIMENT 5 - TIMERS

Objective: In this experiment, it is aimed to learn Timer programming for PIC18F452 in C language.

Theory

The PIC18F452 has 4 timers referred to as Timer 0,1,2,3 and 4. They can be used either as timers to
create a time delay or as counters to count events happening outside the microcontroller. Every timer needs a
clock pulse to tick. The clock source can be internal or external. If we use the internal clock source, then
1/4th of the frequency of the crystal oscillator on the OSC1 and OSC2 pins (Fosc/4) is fed into the timer. By
choosing the external clock option, we feed pulses through one of the PIC18F452’s pins: this is called a
counter. In this experiment we discuss the PIC18 timer.

Many of the PIC18 timers are 16 bits wide. Because the PIC18 has an 8-bit architecture, each 16-bit
timer is accessed as two separate registers of low byte (TMRxL) and high byte (TMRxH). Each timer also
has the TCON(timer control) register for setting modes of operation.

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing the T0CS bit. In Timer mode, the Timer0 module will increment
every instruction cycle (without prescaler). If the TMR0L register is written, the increment is inhibited for
the following two instruction cycles. The user can work around this by writing an adjusted value to the
TMR0L register.

Counter mode is selected by setting the T0CS bit. In Counter mode, Timer0 will increment, either on
every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source
Edge Select bit (T0SE). Clearing the T0SE bit selects the rising edge.

Step to program Timer0 in 16-bit mode

1. Load the value into the T0CON register indicating which mode (8-bit or 16-bit mode) is to be used and
the selected prescaler option.

2. Load register TMR0H followed by register TMR0L with initial count values.

3. Start the timer

4. Keep monitoring the timer flag (TMR0IF) to see if it is raised. Get out of the loop when TMR0IF
becomes high.

5. Stop the timer.

6. Clear the TMR0IF flag for the next round.

7. Go back to step 2 to load TMR0H and TMR0L again.

Experimental Work

Ex.1: Write a C program to toggle all the bits of PORTC continuously every 1s. Use Timer0,

16 bit mode, and the 1:256 prescaler to create the delay.

Ex.2: Write a C program to toggle only the PORTC.3 bit continuously every 4s . Use Timer0,

16-bit mode, the 1:256 prescaler to create the delay.

