
EEE146

PROGRAMMING –I

Course Information

• Name of the Course: Programming-I

• Lecturers: Dr. Seydi Kaçmaz & Dr. Sema Kayhan

• E-mail: seydikacmaz@gantep.edu.tr , skoc@gantep.edu.tr

• Web Announcements: Follow web announcements

Text Book and References:

1- Delores M.Etter & Jeanine A.Ingber, Engineering Problem Solving with C++, Pearson

2- Harvey M.Deitel & Paul J.Deitel, C++ How to Program, Pearson

3- John R.Hubbard, Schaum’s Outline of Theory and Problems of Programming with C++

4- Steve Oualline, Practical C++ Programming, O'Reilly & Associates, Inc

Web pages: http://cpp.gantep.edu.tr

Compiler: Dev C++

Grading: Midterm 1 (%22,5) & Midterm 2 (%22,5) + Laboratory (%15) + Final (%40)

mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:skoc@gantep.edu.tr
mailto:skoc@gantep.edu.tr
http://cpp.gantep.edu.tr/

Syllabus

1. Introduction: Computer organization, algorithms, variables,

data types, operators, intrinsic functions

2. Selection control structure: if, switch statements

3. Repetition control structure: for, while, do-while loops

4. Functions

5. Arrays

6. Vectors

7. Pointers

8. File input, output

9. String operations

A Computer System
A computer system is composed of:

 a monitor,

 a keyboard,

 a mouse,

 and a case (that contains several
controlling components such as
processor and alike),

 and also other peripherals like

 CD player (might have been
included in the case),

 printer,

 scanner,

modem,

 etc.

all connected together

Input
Input

Input

InputInput

Output
Output

/Output

/Output

A Computer System

 Everything we had in the previous slide is hardware.

 i.e., physical components that implement what is requested by

the software.

HARDWARE

OPERATING SYSTEM

(Windows, Linux, MacOS, etc.)

APPLICATIONS

(Eg: Word, Excel, Explorer, MSN, C Compiler,

your own programs, etc.)

S
O

F
T

W
A

R
E

A Computer System

In this course, we will learn how to develop our own software

(using C++ language), but we need to understand how our

programs will be executed by the hardware.

CPU: Central Processing Unit

In terms of hardware, CPU is the most important part for us.

It does all processing and control.

Everything on the computer is controlled and executed by the CPU.

Central Processing Unit (CPU)

Control Unit

Registers

Arithmetic &

Logic Unit

How are the instructions executed ?

instr 2

instr 3

...

instr n

instr 1

Program

Main Memory

R1

R2

.

.

.

Rm

IR

...

How do we write programs ?

We write our

programs in

"C++ language"

(which is an English-

like language)

#include <iostream>

using namespace std;

int main()

{

 cout<<"Hello world!";

 return 0;

}

We use a compiler

(such as Visual C++,

Dev C++, etc.) to

translate our program

from "C++ language"

to "machine

language"

Compile & Link

This is the

executable code in

"machine language."

This is the only thing

the computer can

understand and run

(execute).

1110101011001001010

0010101001010000100

1010010101010100010

1001000100101001

(source code)
(object code)

(machine code

or

executable code)

Statement vs. Instruction

 Our source code (in C++) is composed of statements.

 Eg: a=b+c/2;

 The corresponding machine code is composed of instructions.

 Eg: 1101001010110010 (divide c by 2)

 0110100100100101 (add it to b)

 1010110110111011 (put the result in a)

 CPU is capable of executing instructions, not statements.
Statements may be too complex.

 Compiler implements each statement using several
instructions.

 Eg: The statement "a=b+c/2;" can be implemented as
temp1 = c/2
a = b + temp1

Why have input/output ?

 A program should not always produce the same output.

 O/w, you may keep the result and delete the program after you

run it for the first time.

 A program should be consistent; i.e., it should not produce random

results.

 Therefore, a program should take some input, process it, and

produce some output as the result of that input.

Execution of an instruction

 Let’s see how an instruction like "a=b+2" is executed.

 Assume initially a is 4 and b is 6.

Central Processing Unit (CPU)

Control Unit

Registers Arithmetic &

Logic Unit

...

a=b+2

Main Memory

R1

R2

.

.

.

Rm

IR

...

a 4

b 66

Program

...

a=b+2 2

8

Our first C++ program: Hello World

 Every C program has a main()
function.

 It wraps all the statements to be
executed.

 We make use of previously written
functions. They are provided by header
files.

 Typically, we include the standard
input/output header file, named
iostream.

 We write all statements inside the
main() function.

 #include <iostream>

 using namespace std;

 int main()

 {

 cout<<"Hello world!";

 return 0;

 }

Need for input

 Note that the Hello World program has no input.

 Therefore, it always produces the same output:

 Hello World

 So, after we run this program once, we know what it will always
produce. Therefore, we don’t need the program anymore; we
can safely delete it.

 Definitely this is not what we want. (O/w, nobody will pay us ☺)

 We want to write programs that can take input and produce
different results according to the input.

16

A program that also performs input

#include <iostream>

using namespace std;

int main()

{

 int a, b, c;

 cout<<"Enter two numbers: ";

 cin>>a>>b;

 c=a+b;

 cout<<"Result is“<<c;

 return 0;

}

Enter two numbers:

Result is 13

C++ Program
User screen
_

_
_

\n

5 8_

Read two integers

(decimals) into

variables a and b

Display the value

of variable c after

the text "Result is"

Problem Solving with Computers
 Problem solving with computers involves several steps:

 1.Clearly define the problem

 2.Analyse the problem and formulate a method to solve it

 3.Describe the solution in the form of an algorithm.

 4.Draw a flowchart of the algorithm

 5.Write the computer program

 6.Compile and run the program (debugging)

 7.Test the program (debugging)

 8.Interpretation of results

The Objective first:

To practice thinking algorithmically

To understand and be able to implement

proper program development

To start learning about control structures

To be able to express an algorithm

using a flow chart

Algorithm and flowchart

Algorithm consists of a series of step-by step

instructions for the solution of a problem.

Flowchart is a pictorial form of an algorithm.

What is an Algorithm?

Steps used to solve a problem

Problem must be
 Well defined

 Fully understood

by the programmer

20

• Steps must be

– Ordered

– Unambiguous

– Complete

21

Developing an Algorithm

Program Development

1. Understand the problem

2. Represent your solution (your algorithm)

 Pseudocode

 Flowchart

3. Implement the algorithm in a program

4. Test and debug your program
22

Step 1: Understanding the Problem

 Input
 What information or data are you given?

Process
 What must you do with the information/data?

 This is your algorithm!

Output
 What are your deliverables?

23

Step 2: Represent the Algorithm

Can be done with flowchart or pseudocode

Flowchart
 Symbols convey different types of actions

Pseudocode
 A cross between code and plain English

One may be easier for you – use that one
24

Flowchart Symbols

25

Start

End

Start Symbol

End Symbol

Data Processing

Symbol

Input/Output

Decision Symbol

Flow Control Arrows

Exercise
Write an algorithm that asks a user for their

name, then responds with “Hello NAME”

26

1. Display "what is your name: "

2. input the NAME

3. Display "Hello"

4. Output NAME

S1: Start

S2: Input a,b,c

S3: Set sum=a+b+c

S4: Set mean=sum/3

S5: Output a,b,c,mean

S6: End

START

sum = a+b+c

mean = sum/3

Print

a,b,c,

mean

STOP

input a,b,c

Mean of three integers Example

Inputs: value of 3 integers

Process: sum and calculate mean

Output: mean value

“Weekly Pay” Example

Create a program to calculate the

weekly pay of an hourly employee
 What is the input, process, and output?

 Input: pay rate and number of hours

Process: multiply pay rate by number of

hours

Output: weekly pay 28

Flowchart

29

pay = hours *

rate

Start

Display “Number

of hours worked: ”

input the hours

Display “Amount

paid per hour: ”

input the rate

Display “The pay is $” ,

Output pay

End

Pseudocode
Start with a plain English description,

then…

1. Display "Number of hours worked: "

2. input the hours

3. Display "Amount paid per hour: "

4. input the rate

5. Compute pay = hours * rate

6. Display "The pay is $"

7. Output pay

30

Steps 3 and 4: Implementation

and Testing/Debugging

We’ll cover implementation in detail next

class

Testing and debugging your program

involves identifying errors and fixing them

We’ll talk about this later today
31

Algorithms and Language

Notice that developing the algorithm

didn’t involve any C++ at all
 Only pseudocode or a flowchart was needed

 An algorithm can be coded in any language

All languages have 3 important tools called

control structures that we can use in our

algorithms

32

33

Control Structures

Control Structures

Structures that control how the program

“flows” or operates, and in what order

1-Sequence

2-Decision Making

3-Looping

34

Sequence

One step after another, with no branches

Already wrote one for “Weekly Pay”

problem

What are some real life examples?
 Dialing a phone number

 Purchasing and paying for groceries

35

Decision Making

Selecting one choice from many based

on a specific reason or condition
 If something is true, do A … if it’s not, do B

What are some real life examples?
 Choosing where to eat lunch

36

Decision Making: Pseudocode

Answer the question “Is a number

positive?”
 Start with a plain English description

1. Display "Enter the number: "

2. input the number (call it num)

3. If num < 0

4. Display "It is negative"

5. Else

6. Display "It is positive" 37

Decision Making: Flowchart

38

Start
Display “Enter

the number: ”

input the

number

num < 0

End

Display

“It is negative”

Display

“It is positive”

TRUE FALSE

Looping

Doing something over and over (and over)

again

Used in combination with decision making
 Otherwise we loop forever

This is called an “infinite loop”

What are some real life examples?
 Doing homework problem sets

 Walking up steps
39

Looping: Pseudocode

Write an algorithm that counts from 1 to 20
 Start with a plain English description

1. Set num = 1

2. While num <= 20

3. Display num

4. num = num + 1

5. (End loop)
40

Looping: Flowchart

41

Start

End

Display

num

FALSE

num = 1

num >= 20
TRUE num = num +

1

There’s an error in this

flowchart… do you see

it?

num <= 20

Looping: Flowchart

42

Start

End

Display

num

FALSE

num = 1

TRUE num = num +

1

This type of error is called a

“bug,” and finding and

fixing bugs is called

“debugging”

43

Debugging

Errors (“Bugs”)

Two main classifications of errors

Syntax errors
 Prevent C++ from understanding what to do

Logical errors
 Cause the program to run incorrectly, or to

not do what you want

44

Syntax Errors

“Syntax” is the set of rules followed by a

computer programming language
 Similar to grammar and spelling in English

Examples of C++ syntax rules:
 Keywords must be spelled correctly

cout, float not coutt or flot

 Quotes and parentheses must be closed:

("Open and close")
45

Syntax Error Examples

Find the syntax errors in each line of code

below:

1 coüt<<"Hello";

2 cout<<"Aloha!;

4 cout<<"Good Monring«;

46

Logical Errors

Logical errors don’t bother C++ at all…

they only bother you!

Examples of logical errors:
 Using the wrong value for something

currentYear = 2013

 Doing steps in the wrong order

“Close jelly jar. Put jelly on bread. Open

jelly jar.”
47

Flowchart components

Algorithm and flowchart
example 1
 Mean of three integers

S1: Start

S2: Input a,b,c

S3: Set sum=a+b+c

S4: Set mean=sum/3

S5: Output a,b,c,mean

S6: End

START

sum = a+b+c

mean = sum/3

Print

a,b,c,

mean

STOP

input a,b,c

Algorithm and flowchart
example 2
 Sum of numbers 1 through 10.

S1: Start

S2: Set i=1, sum=0

S3: sum=sum+i

S4: i=i+1

S5: if i <= 10 go to S3

S6: Output sum

S7: End

START

i=1

sum=0

sum=sum+i

i=i+1

i ≤ 10
T

F

Print sum

STOP

Algorithm and flowchart
example 3
 Mean of N numbers

S1: Start

S2: Input N

S3: Set s=0, i=0

S4: Input x

S5: s=s+x, i=i+1

S6: If i<N then go to S4

S7: M=s/N

S8: Output M

S9: End

START

s=0 , i=0

i<N

M=s/N

Print M

STOP

T

F

input N

input x

S=s+x ,i=i+i

Example 3: Determine Whether A Student Passed the Exam or Not:

Algorithm:

Step 1: Input grades of 4 courses M1, M2, M3 and M4,

Step 2: Calculate the average grade with formula "Grade=(M1+M2+M3+M4)/4"

Step 3: If the average grade is less than 60, print "FAIL", else print "PASS".

Flowchart:

Find the largest among three different numbers

entered by the user.

Find all the roots of a quadratic equation

ax2+bx+c=0

Exercise #2

Write an algorithm that asks a user for their

grade, and tells them their letter grade.

A: 100 - 90 C: <80 - 70 F: <60 - 0

B: <90 - 80 D: <70 - 60

55

Start

End
Data Processing

Input/Output Decision

Flow Control

Variables

 Operations (such as addition, subtraction, etc.) operate on

operands.

 You need some space to store the value of each operand.

 A variable provides storage space for a value.

Variables

 IMPORTANT: The value of a variable can never be empty. The value
is represented via multiple bits, each of which is either 0 or 1. So,
the variable always has a value.

 When a local variable is defined, its initial value is undefined. In
other words, it has an arbitrary value. (For the moment, we will
not use global variables.)

 So, make sure that the variable has a valid value before you
perform any operation based on that value.

Variables

 Each variable consists of multiple bits. E.g.:

 Thus, every value is actually stored as a sequence of bits

(1s and 0s) in the computer.

 The number of bits is called the size of the variable.

 The size of a variable depends on the type of the variable, the
hardware, the operating system, and the compiler used.

 So, in your programs NEVER make assumptions about the size of a

 variable.

 The size may change due to the factors listed above, and your
program will not work.

0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1 ➔ 213+210+29+27+25+24+22+21+20=9911

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variables

#include <iostream>

using namespace std;

int main()

{

 int a, b, c;

 a=10;

 b=3;

 c=a-b;

 a=b+2;

}

a ...

Program

b ...

c ...

10

7

3

5

Rules for identifier names

 While defining names for variables (and also functions, user-defined
types, and constants in the future) you should obey the following
rules:

 The first character of a name must be a letter or underscore (‘_’).

 The remaining characters must be letters, digits, or underscore.

 Only the first 31 characters are significant.

 Avoid reserved words such as int, float, char, etc. as identifier
names.

 However, it is better to avoid starting identifier names with
underscore.

 Also remember that C++ language is case-sensitive.

 It is a very good practice to use meaningful names.

Rules for identifier names

 Valid:

a, a1, count, no_of_students, B56, b_56

 Invalid:

1a, sayı, int, $100

 Valid but not recommended:

_b56, Arzucan, FB, GS, BJK,

I_dont_remember_what_this_variable_means,

a_very_very_long_identifier_name_1,

a_very_very_long_identifier_name_2

Standard data types

 You have to specify the type of a variable when you define it.

 There are three standard data types:

 Integer (i.e., whole numbers)

 Float (i.e., real or floating-point numbers)

 Characters

 We will discuss user-defined types later in the course.

Integers

 Syntax:

int variable_list;

where variable_list is a comma-separated list of variable names.
Each variable name may be followed by an optional assignment
operator and a value for initialization.

Eg: int a, b=10, c;

 Integer is a class of variable types. The most basic one is int.

 The size may change, but the leftmost bit is used for the sign. The
remaining bits represent the value in binary.

 Though the size of an int variable may vary, it is always limited, i.e.,
it contains a limited number of bits. Therefore, the maximum and
minimum values that can be represented by an int variable is limited.

Integers

 For example, assume in your system an integer has 16 bits.

 Leftmost bit is used for the sign, so 15 bits are left for the value.

So, you have 215=32,768 positive values, ranging from 0 to 32,767.

Similarly, you have 32,768 negative values, this time ranging from -

1 to -32,768.

 If you have 32 bits (4 bytes) for an integer, than the maximum

value is 231=2,147,483,647.

0 0 1 0 0 1 1 0 1 0 1 1 0 1 1 1

sign bit value

Integers

 There are variations of int such as long int, short int,

unsigned int.

 For each one of these types, you may ignore the word "int" and
use long, short, and unsigned, respectively.

 The sizes of these types are ordered as follows:

short int ≤ int ≤ long int

Floating-point numbers

 Syntax:

float variable_list;

 Float type is used for real numbers.

 Note that all integers may be represented as floating-point

numbers, but not vice versa.

Floating-point numbers

 Similar to integers, floats also have their limits: maximum and

minimum values are limited as well as the precision.

Lower limit Upper limitThe value you

want to store

Due to loss of precision, what you actually

store might be this, or this

Floating-point numbers

 There are two variations of float: double and long double.

 They have wider range and higher precision.

 The sizes of these types are ordered as follows:

float ≤ double ≤ long double

Characters

 Syntax:

char variable_list;

 Character is the only type that has a fixed size in all

implementations: 1 byte.

 All letters (uppercase and lowercase, separately), digits, and

symbols (such as +,-,!,?,$,£,^,#, comma itself, and many others)

are of type character.

Characters

 Since every value is represented with bits (0s and 1s), we need a

mapping for all these letters, digits, and symbols.

 This mapping is provided by a table of characters and their

corresponding integer values.

 The most widely used table for this purpose is the ASCII table.

Characters

 The ASCII table contains the values for 256 values (of which only

the first 128 are relevant for you). Each row of the table contains

one character. The row number is called the ASCII code of the

corresponding character.

(The topic of character encoding is beyond the scope of this

course. So, we will work with the simplified definition here.)

ASCII table (partial)
ASCII code Symbol ASCII code Symbol ASCII code Symbol ASCII code Symbol

... ... 66 B 84 T 107 k

32 blank 67 C 85 U 108 l

37 % 68 D 86 V 109 m

42 * 69 E 87 W 110 n

43 + 70 F 88 X 111 o

... ... 71 G 89 Y 112 p

48 0 72 H 90 Z 113 q

49 1 73 I 114 r

50 2 74 J 97 a 115 s

51 3 75 K 98 b 116 t

52 4 76 L 99 c 117 u

53 5 77 M 100 d 118 v

54 6 78 N 101 e 119 w

55 7 79 O 102 f 120 x

56 8 80 P 103 g 121 y

57 9 81 Q 104 h 122 z

... ... 82 R 105 i

65 A 83 S 106 j

Characters

 Never memorize the ASCII codes. They are available in all

programming books and the Internet. (Eg: http://www.ascii-

code.com)

 What is important for us is the following three rules:

 All lowercase letters (a,b,c,...) are consecutive.

 All uppercase letters (A,B,C,...) are consecutive.

 All digits are consecutive.

http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/

Characters

 Note that a and A have different ASCII codes (97 and 65).

 You could also have a variable with name a. To differentiate between the
variable and the character, we specify all characters in single quotes, such
as 'a'. Variable names are never given in quotes.

 Example: char ch;

 ch='a';

 Note that using double quotes makes it a string (to be discussed later in
the course) rather than a character. Thus, 'a'and "a" are different.

 Similarly, 1 and '1'are different. Former has the value 1, whereas the
latter has the ASCII value of 49.

Characters

 A character variable actually stores the ASCII value of the

corresponding letter, digit, or symbol.

 I/O functions (cin, cout, etc.) do the translation between the image

of a character displayed on the screen and the ASCII code that is

actually stored in the memory of the computer.

sizeof() operator

Constants

 Syntax:

#define constant_name constant_value

 As the name implies, variables store values that vary while constants
represent fixed values.

 Note that there is no storage when you use constants. Actually, when you
compile your program, the compiler replaces the constant name with the
value you defined.

 The pre-processor replaces every occurrence of constant_name with
everything that is to the right of constant_name in the definition.

 Note that there is no semicolon at the end of the definition.

 Conventionally, we use names in uppercase for constants.

Example
#include <iostream>

using namespace std;

#define CURRENTYEAR 2014

int main(){

 int year, age;

char myName;

cout<<"Enter the year you were born and your initial \n";

cin>> year >> myName;

cout<<"Your initial is: " <<myName ;

age = CURRENTYEAR - year;

cout<<"Your age is: "<<age;

 return 0;

}

Enumerated type

 Used to define your own types.

 Syntax:

enum type_name {

 item_name=constant_int_value, ...

} variable_list;

 By default, the value of the first item is 0, and it increases by one for
consecutive items. However, you may change the default value by specifying
the constant value explicitly.

 Eg: enum boolean {FALSE,TRUE} v1, v2;

enum days {SUN,MON,TUE,WED,THU,FRI,SAT};

enum {one=1,five=5,six,seven,ten=10,eleven} num;

enum months

{JAN=1,FEB,MAR,APR,MAY,JUN,JUL,AUG,SEP,OCT,NOV,DEC};

Text in green is optional

Operators

 We will cover the most basic operators in class. More operators will be

covered in the labs.

 Assignment operator (=)

 Note that this is not the "equals" operator. It should be pronounced

as "becomes." (Equals is another operator.)

 The value of the expression on the RHS is assigned (copied) to the

LHS.

 It has right-to-left associativity.

a=b=c=10;

makes all three variables 10.

Assignment and type conversion

 When a variable of a narrower type is assigned to a variable of

wider type, no problem.

 Eg: int a=10; float f;

f=a;

 However, there is loss of information in reverse direction.

 Eg: float f=10.9; int a;

a=f;

Operators
 Arithmetic operators (+,-,*,/,%)

 General meanings are obvious.

 What is important is the following: If one of the operands is of a
wider type, the result is also of that type. (Its importance will be
more obvious soon.)

 Eg: Result of int+float is float. Result of float+double is double.

 In C++ language, there are two types of division: integer division
and float division.

 If both operands are of integer class, we perform integer
division and the result is obtained by truncating the decimal
part.

 Eg: 8/3 is 2, not 2.666667.

 If one of the operands is of float class, the result is float.

 Eg: 8.0/3 or 8/3.0 or 8.0/3.0 is 2.666667, not 2.

Operators

 Remainder operator is %. Both operands must be of integer class.

 Eg: 10%6 is 4 (equivalent to 10 mod 6)

 +,-,*,/,% have left-to-right associativity. That means a/b/c is equivalent

to (a/b)/c, but not a/(b/c).

Operators

 Logic operators (&&, ||, !)

 Logic operators take integer class operands.

 Zero means false.

 Anything non-zero means true.

 "&&" does a logical-AND operation. (True only if both operands

are true.)

 "||" does a logical-OR operation. (False only if both operands

are false.)

 "!" does a negation operation. (Converts true to false, and false

to true.)

Operators

• Logic operators follow the logic rules

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

• The order of evaluation is from left to right

• As usual parenthesis overrides default order

Operators

 If the first operand of the "&&" operator is false, the second

operand is not evaluated at all (since it is obvious that the

whole expression is false).

 Eg: In the expression below, if the values of b and c are

initially 0 and 1, respectively,

 a = b && (c=2)

 then the second operand is not evaluated at all, so c keeps

its value as 1.

 Similarly, if the first operand of the "||" operator is true, the

second operand is not evaluated at all.

Operators

 Other assignment operators (+=, -=, *=, /=, %=)

 Instead of writing a=a+b, you can write a+=b in short. Similar with -

=, *=, /=, and others.

Operators

 Pre/Post increment/decrement operators (++, --)

 The operator ++ increments the value of the operand by 1.

 If the operator comes BEFORE the variable name, the value of
the variable is incremented before being used, i.e., the value
of the expression is the incremented value. This is pre-
increment.

 In post-increment, the operator is used after the variable
name, and incrementation is performed after the value is used,
i.e., the value of the expression is the value of the variable
before incrementation.

Operators

Ex: a=10; c=10,

 b=++a; d=c++;

Both a and c will become 11, but b will be 11 while d is 10.

Ex:

x y

int x=10, y=20; 10 20

++x; 11 20

y= --x; 10 10

x= x-- +y; 19 10

y= x - ++x; 20 0

Operators

 Comparison operators (==,!=,<,<=,...)

 "==" is the "is equal to" operator. Like all other comparison
operators, it evaluates to a Boolean value of true or false, no
matter what the operand types are.

 IMPORTANT: When you compare two float values that are
supposed to be equal mathematically, the comparison may fail
due to the loss of precision discussed before.

Operators

Symbol Usage Meaning

== x == y is x equal to y?

!= x != y is x not equal to y?

> x > y is x greater than y?

< x < y is x less than y?

>= x >= y is x greater than or equal to y?

<= x <=y is x less than or equal to y?

Operators

 We can create complex expressions by joining several expressions

with logic operators.

Symbol Usage Meaning

&& exp1 && exp2 AND

|| exp1 || exp2 OR

! ! exp NOT

Operators

 While using multiple operators in the same expression, you should
be careful with the precedence and associativity of the operands.

 Eg: The following does NOT check if a is between 5 and 10.

bool = 5<a<10;

 bool will be true if a is 20. (Why?)

 Don’t hesitate to use parentheses when you are not sure about
the precedence (or to make things explicit).

Operator precedence table

Operator Associativity

() [] . -> left-to-right

++ -- + - ! ~ (type) * & sizeof right-to-left

* / % left-to-right

+ - left-to-right

<< >> left-to-right

< <= > >= left-to-right

== != left-to-right

& left-to-right

^ left-to-right

| left-to-right

&& left-to-right

|| left-to-right

?: right-to-left

= += -= *= /= %= &= ^= |= <<= >>= right-to-left

, left-to-right

Operators

 Precedence, associativity, and order of evaluation:

 In the table is given in the previous slide, precedence decreases as

you go down.

 If two operands in an expression have the same precedence, you

decide according to the associativity column.

 There is a common misunderstanding about associativity.

Note that associativity has nothing to do with the order of

evaluation of the operands.

Order of evaluation of operands is not specified in C++ language.

Type casting

 Also called coersion or type conversion.

 It does NOT change the type of a variable. It is not possible to

change the type of a variable.

 What casting does is to convert the type of a value.

Type casting

 Eg: int a=10, b=3;

 float f, g;

 f=a/b;

 g=(float)a/b;

 The type of a does not change; it is still an integer. However, in the
expression (float)a/b, the value of a, which is 10, is converted to
float value of 10.0, and then it is divided by b, which is 3. Thus, we
perform float division and g becomes 3.3333...

 On the other hand, we perform an integer division for f, so it becomes
3.

Precedence examples

 1 * 2 + 3 * 5 % 4

 _/
 |
 2 + 3 * 5 % 4

 _/
 |
 2 + 15 % 4

 ___/
 |
 2 + 3

 ________/
 |
 5

1 + 8 % 3 * 2 - 9

 _/
 |
1 + 2 * 2 - 9

 ___/
 |
1 + 4 - 9

 ______/
 |
 5 - 9

 _________/
 |
 -4

Mixing types

 2.0 + 10 / 3 * 2.5 – 3.0 / 2

 ___/
 |
2.0 + 3 * 2.5 – 3.0 / 2

 _____/
 |
2.0 + 7.5 - 3.0 / 2

 _/
 |
2.0 + 7.5 - 1.5

 _________/
 |
 9.5 - 1.5

 ______________/
 |
 8.0

Basic intrinsic functions

An intrinsic or a library function is a function

provided by C++ language. For example the

cmath library contains the mathematical

functions/constants.

	Slide 1
	Slide 2: Course Information
	Slide 3: Syllabus
	Slide 4: A Computer System
	Slide 5
	Slide 6: A Computer System
	Slide 7: A Computer System
	Slide 8: CPU: Central Processing Unit
	Slide 9: How are the instructions executed ?
	Slide 10: How do we write programs ?
	Slide 11: Statement vs. Instruction
	Slide 12: Why have input/output ?
	Slide 13: Execution of an instruction
	Slide 14: Our first C++ program: Hello World
	Slide 15: Need for input
	Slide 16: A program that also performs input
	Slide 17: Problem Solving with Computers
	Slide 18: The Objective first:
	Slide 19: Algorithm and flowchart
	Slide 20: What is an Algorithm?
	Slide 21: Developing an Algorithm
	Slide 22: Program Development
	Slide 23: Step 1: Understanding the Problem
	Slide 24: Step 2: Represent the Algorithm
	Slide 25: Flowchart Symbols
	Slide 26: Exercise
	Slide 27: Mean of three integers Example
	Slide 28: “Weekly Pay” Example
	Slide 29: Flowchart
	Slide 30: Pseudocode
	Slide 31: Steps 3 and 4: Implementation and Testing/Debugging
	Slide 32: Algorithms and Language
	Slide 33: Control Structures
	Slide 34: Control Structures
	Slide 35: Sequence
	Slide 36: Decision Making
	Slide 37: Decision Making: Pseudocode
	Slide 38: Decision Making: Flowchart
	Slide 39: Looping
	Slide 40: Looping: Pseudocode
	Slide 41: Looping: Flowchart
	Slide 42: Looping: Flowchart
	Slide 43: Debugging
	Slide 44: Errors (“Bugs”)
	Slide 45: Syntax Errors
	Slide 46: Syntax Error Examples
	Slide 47: Logical Errors
	Slide 48: Flowchart components
	Slide 49: Algorithm and flowchart example 1
	Slide 50: Algorithm and flowchart example 2
	Slide 51: Algorithm and flowchart example 3
	Slide 52: Example 3: Determine Whether A Student Passed the Exam or Not: Algorithm: Step 1: Input grades of 4 courses M1, M2, M3 and M4, Step 2: Calculate the average grade with formula "Grade=(M1+M2+M3+M4)/4" Step 3: If the average grade is less than 60,
	Slide 53: Find the largest among three different numbers entered by the user.
	Slide 54: Find all the roots of a quadratic equation ax2+bx+c=0
	Slide 55: Exercise #2
	Slide 56: Variables
	Slide 57: Variables
	Slide 58: Variables
	Slide 59: Variables
	Slide 60: Rules for identifier names
	Slide 61: Rules for identifier names
	Slide 62: Standard data types
	Slide 63: Integers
	Slide 64: Integers
	Slide 65: Integers
	Slide 66: Floating-point numbers
	Slide 67: Floating-point numbers
	Slide 68: Floating-point numbers
	Slide 69: Characters
	Slide 70: Characters
	Slide 71: Characters
	Slide 72: ASCII table (partial)
	Slide 73: Characters
	Slide 74: Characters
	Slide 75: Characters
	Slide 76:
	Slide 77: sizeof() operator
	Slide 78: Constants
	Slide 79: Example
	Slide 80: Enumerated type
	Slide 81: Operators
	Slide 82: Assignment and type conversion
	Slide 83: Operators
	Slide 84: Operators
	Slide 85: Operators
	Slide 86: Operators
	Slide 87: Operators
	Slide 88: Operators
	Slide 89: Operators
	Slide 90: Operators
	Slide 91: Operators
	Slide 92: Operators
	Slide 93: Operators
	Slide 94: Operators
	Slide 95: Operator precedence table
	Slide 96: Operators
	Slide 97: Type casting
	Slide 98: Type casting
	Slide 99: Precedence examples
	Slide 100: Mixing types
	Slide 101: Basic intrinsic functions
	Slide 102:
	Slide 103:

