

Course Information

 Name of the Course: Programming-I

* Lecturers: Dr. Seydi Kagmaz & Dr. Sema Kayhan
 E-mail: seydikacmaz@gantep.edu.tr , skoc@gantep.edu.tr
« Web Announcements: Follow web announcements

Text Book and References:

1- Delores M.Etter & Jeanine A.Ingber, Engineering Problem Solving with C++, Pearson
2- Harvey M.Deitel & Paul J.Deitel, C++ How to Program, Pearson

3- John R.Hubbard, Schaum’s Outline of Theory and Problems of Programming with C++
4- Steve Oualline, Practical C++ Programming, O'Reilly & Associates, Inc

Web pages: http://cpp.gantep.edu.tr

Compiler: Dev C++

Grading: Midterm 1 (%22,5) & Midterm 2 (%22,5) + Laboratory (%15) + Final (%40)

mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:seydikacmaz@gantep.edu.tr
mailto:skoc@gantep.edu.tr
mailto:skoc@gantep.edu.tr
http://cpp.gantep.edu.tr/

Syllabus

1. Introduction: Computer organization, algorithms, variables,
data types, operators, intrinsic functions

2. Selection control structure: if, switch statements
3. Repetition control structure: for, while, do-while loops

Functions

>

Arrays
Vectors
Pointers

File input, output

© e N v

String operations

A Computer System

A computer system is composed of:
» a monitor,
» a keyboard,
» a mouse,

» and a case (that contains several
controlling components such as
processor and alike),

Hi » and also other peripherals like

» CD player (might have been
included in the case),

» printer,
» scanner,
» modem,
» etc.
all connected together

Input/Output Input

oooo

Input/Output

Output o
) 7 utput
|

—_—

Input

Input

A Computer System

» Everything we had in the previous slide is hardware.

» i.e., physical components that implement what is requested by
the software.

OPERATING SYSTEM
(Windows, Linux, MacOS, etc.)

SOFTWARE
A

" I

A Computer System

In this course, we will learn how to develop our own software
(using C++ language), but we need to understand how our
programs will be executed by the hardware.

CPU: Central Processing Unit

In terms of hardware, CPU is the most important part for us.
It does all processing and control.

Everything on the computer is controlled and executed by the CPU.

How are the instructions executed ?

Main Memory Central Processing Unit (CPU)
Registers
R1
R2
Arithmetic &
Logic Unit
Rm

Control Unit

How do we write programs ?

#include <iostream>
using namespace std;
int main()
{
cout<<"Hello world!";
return O;

1110101011001001010
0010101001010000100

_ _ 1010010101010100010
Compile & Link 1001000100101001

(source code)

(machine co

(object code)

Statement vs. Instruction

» Our source code (in C++) is composed of statements.
» Eg: a=b+c/2;
» The corresponding machine code is composed of instructions.
» Eg: 1101001010110010 (divide c by 2)
0110100100100101 (add it to b)
1010110110111011 (put the result in a)

» CPU is capable of executing instructions, not statements.
Statements may be too complex.

» Compiler implements each statement using several

instructions.
» Eg: The statement "a=b+c/2;" can be implemented as
templ = c/2

a = b + templ

Why have input/output ?

» A program should not always produce the same output.

» O/w, you may keep the result and delete the program after you
run it for the first time.

» A program should be consistent; i.e., it should not produce random
results.

» Therefore, a program should take some input, process it, and
produce some output as the result of that input.

Execution of an instruction

» Let’s see how an instruction like "a=b+2" is executed.
» Assume initially a is 4 and b is 6.

Main Memory

Central Processing Unit (CPU)

Our first C++ program: Hello World

» Every C program has a main () » #include <iostream>
function. » using nhamespace std;
» It wraps all the statements to be > int main()
executed.
» We make use of previously written > 1
functions. They are provided by header » cout<<"Hello world!";
files. » return O;
» Typically, we include the standard > 1

input/output header file, named
jostream.

» We write all statements inside the
main () function.

Need for input

» Note that the Hello World program has no input.
» Therefore, it always produces the same output:
Hello World

» So, after we run this program once, we know what it will always
produce. Therefore, we don’t need the program anymore; we
can safely delete it.

» Definitely this is not what we want. (O/w, nobody will pay us ©)

» We want to write programs that can take input and produce
different results according to the input.

A program that also performs input

User screen

Enter two numbers: 5 8

C++ Program

#include <iostream> _
Result is 13 -

using namespace std; -

int main ()

{
int a, b, c¢;
cout<<"Enter two numbers: ";
c=a+b; \n
cout<<"Result 1s"“<<c;
return O;

h |

Read two integers

Display the value
of variable c after
the text "Result is"

(decimals) into
variables a and b

Problem Solving with Computers

» Problem solving with computers involves several steps:

» 1.Clearly define the problem

» 2.Analyse the problem and formulate a method to solve it
» 3.Describe the solution in the form of an algorithm.

» 4.Draw a flowchart of the algorithm

» 5.Write the computer program

» 6.Compile and run the program (debugging)

» 7.Test the program (debugging)
>

8.Interpretation of results

The Objective first:

» To practice thinking algorithmically

» To understand and be able to implement
proper program development

» To start learning about control structures

» To be able to express an algorithm
using a flow chart

Algorithm and flowchart

Algorithm consists of a series of step-by step
instructions for the solution of a problem.

Flowchart is a pictorial form of an algorithm.

What is an Algorithm?

» Steps used to solve a problem

» Problem must be * Steps must be
> Well defined — Ordered

» Fully understood — UnambigUOUS
by the programmer
— Complete

Developing an Algorithm

Program Development

1. Understand the problem

2. Represent your solution (your algorithm)
» Pseudocode
» Flowchart

3. Implement the algorithm in a program

4. Test and debug your program

Step 1: Understanding the Problem

» Input

» What information or data are you given?

» Process

» What must you do with the information/data?

» This is your algorithm!

» Output

» What are your deliverables?

Step 2: Represent the Algorithm

» Can be done with flowchart or pseudocode

» Flowchart

» Symbols convey different types of actions

» Pseudocode

» A cross between code and plain English

» One may be easier for you - use that on

Flowchart Symbols

C Start)

Start Symbol

Co)

End Symbol

Data Processing
Symbol

[/

Input/Output

<>

Decision Symbol

\

Flow Control Arrows

Exercise
» Write an algorithm that asks a user for thei

name, then responds with “Hello NAME”

Pseudocode

Display "what is your name: "
input the NAME

Display "Hello"

Output NAME

AowoNoR

Mean of three integers Example

Inputs: value of 3 integers
Process: sum and calculate mean
Output: mean value

Pseudocode

S1: Start

S2: Input a,b,c

S3: Set sum=a+b+c

S4: Set mean=sum/3
S5: Output a,b,c,mean
S6: End

{ input a,b,c /

sum = a+b+c
mean = sum/3

“Weekly Pay” Example

» Create a program to calculate the
weekly pay of an hourly employee

» What is the input, process, and output?

» Input: pay rate and number of hours

» Process: multiply pay rate by number of
hours

» Output: weekly pay

Flowchart

(Start) /input the rate
/f)isplay “Number/ pay = hours *
of hours worked: rate

A4 \4

/nput the hour% / Dispgslfj ;;Zetp;; ; $”

isplay “Amount (
/f:)aid per hour: ”/ End

Pseudocode

» Start with a plain English description,
then...

1. Display "Number of hours worked: "
2. input the hours

3. Display "Amount paid per hour: "
4. input the rate

5. Compute pay = hours * rate

6. Display "The pay is $"

7. Output pay

Steps 3 and 4: Implementation
and Testing/Debugging

» We'll cover implementation in detail next
class

» Testing and debugging your program
involves identifying errors and fixing them

»We’ll talk about this later today

Algorithms and Language

» Notice that developing the algorithm
didn’t involve any C++ at all

» Only pseudocode or a flowchart was needed

» An algorithm can be coded in any language

» All languages have 3 important tools called
control structures that we can use in our
algorithms

Control Structures

Control Structures

» Structures that control how the program
“flows” or operates, and in what order

» 1-Sequence
» 2-Decision Making
» 3-Looping

Sequence

» One step after another, with no branches

» Already wrote one for “Weekly Pay”
problem

» What are some real life examples?

» Dialing a phone number

» Purchasing and paying for groceries

Decision Making

» Selecting one choice from many based
on a specific reason or condition

» If something is true, do A ... if it’s not, do B

» What are some real life examples?

» Choosing where to eat lunch

Decision Making: Pseudocode

» Answer the question “Is a number
positive?”

» Start with a plain English description

1. Display "Enter the number: "
2. input the number (call it num)
3. If num < 0O

4. Display "It is negative"
5. Else

6. Display "It is positive"

Decision Making: Flowchart
Display “Enter / _/input the
(Start)7/ the number: number

\]/ TRUE @ FALSE \L

/ Display / / Display
“It is negative, “It is positivey

Coma

Looping

» Doing something over and over (and ove
again

» Used in combination with decision makin

» Otherwise we loop forever

» This is called an “infinite loop”

» What are some real life examples?

» Doing homework problem sets

» Walking up steps

Looping: Pseudocode

» Write an algorithm that counts from 1 to 20

» Start with a plain English description

. Set num =1
. While num <= 20

Display num

C- N VR V.

num = num + 1

5. (End loop)

Looping: Flowchart

(Start } num =

(There s an error in this
flowchart... do you see

P
N

it?

) 4

L
@%TRUE/ Dggrfy / | num =1num +

FALSE \/

Looping: Flowchart

(Start } num = 1

\

is type of error is called a
“bug,” and finding and

P
N

/

@

NuUumMm = Num +
<=>TRUE/ Dlr?Erl:y / .

f1x1ng bugs lS called

”

1

4

FALSE ./
/\ End)

Debugging

Errors (“Bugs”)

» Two main classifications of errors

» Syntax errors

» Prevent C++ from understanding what to do

» Logical errors

» Cause the program to run incorrectly, or to
not do what you want

Syntax Errors

» “Syntax” is the set of rules followed by
computer programming language

» Similar to grammar and spelling in English

» Examples of C++ syntax rules:

» Keywords must be spelled correctly

cout, float not coutt or £lot

» Quotes and parentheses must be closed:

("Open and close")

Syntax Error Examples

» Find the syntax errors in each line of cod

below:
1 coit<<"Hello";
2 cout<<"Aloha!;

4 cout<<"Good Monring«;

Logical Errors

» Logical errors don’t bother C++ at all...
they only bother you!

» Examples of logical errors:

» Using the wrong value for something

currentYear = 2013

» Doing steps in the wrong order

» “Close jelly jar. Put jelly on bread.
jelly jar.”

Flowchart components

@ Beginning or end of an algorithm

D Input or output of information

A computation

Decision making

@ The beginning of the repetition structure.

The direction of flow of the algorithm.

| —

Circles with arrows connect the flowchart between pages.

Algorithm and flowchart

example 1
» Mean of three integers

{ input a,b,c /

sum = a+b+c
mean = sum/3

S1: Start
S2: Input a,b,c

S3: Set sum=a+b+c

S4: Set mean=sum/3

S5: Output a,b,c,mean
S6: End

Algorithm and flowchart

example 2
» Sum of numbers 1 through 10.

S1: Start su]m=0
S2: Set i=1, sum=0
S3: sum=sum-+i

S4: i=i+1
S5:ifi<=10 go to S3
S6: Output sum

S7: End

sum=sum-+i
1=i+1

<>

F
: Print sum /

Algorithm and flowchart

example 3 |

input N

» Mean of N humbers L|—/
S1: Start \ s=0 , i=0 |
S2: Input N

S3: Set s=0, i=0 i
S4: Input x

S5: s=s+X, i=i+1

S6: If i<N then go to S4
S7: M=s/N

S8: Output M L M=s/iN__ |

: End |

C Print M /

Example 3: Determine Whether A Student Passed the Exam or Not:
Algorithm:

Step 1: Input grades of 4 courses M1, M2, M3 and M4,

Step 2: Calculate the average grade with formula "Grade=(M1+M2+M3+M4)/4"
Step 3: If the average grade is less than 60, print "FAIL", else print "PASS".
Flowchart:

Find the largest among three different numbers
entered by the user.

Declare variables a, b and ¢
Read a,band c
ue

ﬁno

print b

print a

E
<>

Find all the roots of a quadratic equation

<=

axZ+bx+c=0

Declare variables a, b,
D, x1, x2, rp and ip
Calculate discriminant,
D <- b? - 4ac
True @ False
rl1 « (-b ++/D) / 2a ip < -b/2a
r2 « (-b +v/D) / 2a re <« +/-D / 2a

x1 « ip + j*ip

X2 <« rp - j*ip

1

Display r1 and r2

Exercise #2

» Write an algorithm that asks a user for their
grade, and tells them their letter grade.

A: 100 - 90 C: <80-70 F: <60-0
B: <90 - 80 D: <70 - 60
Cstat) [/ <>
Input/Output Decision
(End)

Data Processing

Variables

» Operations (such as addition, subtraction, etc.) operate on
operands.

» You need some space to store the value of each operand.

» A variable provides storage space for a value.

Variables

» IMPORTANT: The value of a variable can never be empty. The value
is represented via multiple bits, each of which is either 0 or 1. So,
the variable always has a value.

» When a local variable is defined, its initial value is undefined. In
other words, it has an arbitrary value. (For the moment, we will
not use global variables.)

» So, make sure that the variable has a valid value before you
perform any operation based on that value.

Variables

15 14 13 12 11 10
0[{0|1(0]|0]|1

R o
O
Y
oo
R(w
(I N
o|w
(YN
[y
R|o

2> 213+210+429+27+2°+24+22+21+2°=9911

» Each variable consists of multiple bits. E.g.:

» Thus, every value is actually stored as a sequence of bits
(1s and Os) in the computer.

» The number of bits is called the size of the variable.

» The size of a variable depends on the type of the variable, the
hardware, the operating system, and the compiler used.

» So, in your programs NEVER make assumptions about the size of a
» variable.

» The size may change due to the factors listed above, and your
program will not work.

Variables

#include <iostream>
using namespace std; Program
int main|()

{

int a, b, c;

a=10;
=3;

c=a-b;

a=b+2;

Rules for identifier names

» While defining names for variables (and also functions, user-defined
types, and constants in the future) you should obey the following
rules:

» The first character of a name must be a letter or underscore (‘_’).
» The remaining characters must be letters, digits, or underscore.
» Only the first 31 characters are significant.

» Avoid reserved words such as int, float, char, etc. as identifier
names.

» However, it is better to avoid starting identifier names with
underscore.

Also remember that C++ language is case-sensitive.

It is a very good practice to use meaningful names.

Rules for identifier names

» Valid:
a, al, count, no of students, B56, b 56

» Invalid:
la, sayi, int, $100

» Valid but not recommended:

_b56, Arzucan, FB, GS, BJK,

I dont remember what this variable means,
a very very long 1dent1f1er name 1,
a_very_very_long_ldentlfle:_name_z

Standard data types

» You have to specify the type of a variable when you define it.
» There are three standard data types:

» Integer (i.e., whole numbers)

» Float (i.e., real or floating-point numbers)

» Characters

» We will discuss user-defined types later in the course.

Integers

» Syntax:
int variable list;

where variable list is a comma-separated list of variable names.
Each variable name may be followed by an optional assignment
operator and a value for initialization.

»Eg: int a, b=10, c;
» Integer is a class of variable types. The most basic one is int.

» The size may change, but the leftmost bit is used for the sign. The
remaining bits represent the value in binary.

» Though the size of an int variable may vary, it is always limited, i.e.,
it contains a limited number of bits. Therefore, the maximum and
minimum values that can be represented by an int variable is limi

Integers

» For example, assume in your system an integer has 16 bits.

ojo0j1|0|0f1f{1f(of1|0|1f2|(Of1|1|1
S —— —
sign bit value

» Leftmost bit is used for the sign, so 15 bits are left for the value.
So, you have 2'°=32,768 positive values, ranging from 0 to 32,767.
Similarly, you have 32,768 negative values, this time ranging from -
1to-32,768.

» If you have 32 bits (4 bytes) for an integer, than the maximum
value is 231=2,147,483,647.

Integers

» There are variations of int such as long int, short int,
unsigned int.

» For each one of these types, you may ignore the word "int" and
use long, short, and unsigned, respectively.

» The sizes of these types are ordered as follows:

short int < int < long int

Floating-point numbers

» Syntax:
float variable list;
» Float type is used for real numbers.

» Note that all integers may be represented as floating-point
numbers, but not vice versa.

Floating-point numbers

» Similar to integers, floats also have their limits: maximum and
minimum values are limited as well as the precision.

Due to loss of precision, what you actually
store might be this, or this

Lower limit The value you Upper limit

A
v

want to store

Floating-point numbers

» There are two variations of float: double and long double.
» They have wider range and higher precision.
» The sizes of these types are ordered as follows:

float < double < long double

Characters

» Syntax:

char variable list;

» Character is the only type that has a fixed size in all
implementations: 1 byte.

» All letters (uppercase and lowercase, separately), digits, and
symbols (such as +,-,!,?,5,£,%,#, comma itself, and many others)
are of type character.

Characters

» Since every value is represented with bits (Os and 1s), we need a
mapping for all these letters, digits, and symbols.

» This mapping is provided by a table of characters and their
corresponding integer values.

» The most widely used table for this purpose is the ASCII table.

Characters

» The ASCII table contains the values for 256 values (of which only
the first 128 are relevant for you). Each row of the table contains
one character. The row number is called the ASCII code of the
corresponding character.

(The topic of character encoding is beyond the scope of this
course. So, we will work with the simplified definition here.)

ASCIT table (partial)

ASCII code Symbol ASCII code Symbol ASCII code Symbol ASCII code Symbol
66 B 84 T 107 k
32 blank 67 Cc 85 u 108 |
37 % 68 D 86 \' 109 m
42 * 69 E 87 w 110 n
43 + 70 F 88 X 111 o
71 G 89 Y 112 p
438 0 72 H 90 z 113 q
49 1 73 | 114 r
50 2 74 J 97 a 115 s
51 3 75 K 98 b 116 t
52 4 76 L 99 c 117 u
53 5 77 M 100 d 118 v
54 6 78 N 101 e 119 w
55 7 79 (0] 102 f 120 X
56 8 80 P 103 g 121 y
57 9 81 Q 104 h 122 z
82 R 105 i
65 A 83 S 106 i

Characters

» Never memorize the ASCIlI codes. They are available in all
programming books and the Internet. (Eg: http://www.ascii-

code.com)
» What is important for us is the following three rules:

» All lowercase letters (a,b,c,...) are consecutive.
» All uppercase letters (A,B,C,...) are consecutive.

» All digits are consecutive.

http://www.ascii-code.com/
http://www.ascii-code.com/
http://www.ascii-code.com/

Characters

Note that a and A have different ASCIl codes (97 and 65).

You could also have a variable with name a. To differentiate between the

variable and the character, we specify all characters in single quotes, such
as 'a'. Variable names are never given in quotes.

» Example: char ch;
ch='a';

Note that using double quotes makes it a string (to be discussed later in
the course) rather than a character. Thus, 'a'and "a" are different.

Similarly, 1 and '1'are different. Former has the value 1, whereas the
latter has the ASCII value of 49.

Characters

» A character variable actually stores the ASCII value of the
corresponding letter, digit, or symbol.

» 1/0 functions (cin, cout, etc.) do the translation between the image
of a character displayed on the screen and the ASCII code that is
actually stored in the memory of the computer.

The table shows the fundamental data types in C++,

as well as the range of values.
Tablo 2.1: Fundamental data t es and thmr size and ran

es in the memn . The numbers are evaluated for a 32-brr 5 srem

Lower Limit

. -128 127
lansigned char Character or small integer 1 5 755
short int X -32,768| 32,767
jmnsigned short int Sort Integer ‘ 0 65,535
int _ . Integer 4 -2,147,483 648 2,147,483,647|
unsigned int 0 4,294,967,295
long int -9,223,372,036,854,775,808| 9223,372,036,854,775,807|

- - Long integer 8

unsigned long int 0| 18,446,744,073,709,551,615
float Single precision floating point number (7 digits) 4 -3.4e +/- 38| +3.4e +/- 38
double Double precision floating point number (15 digits) 8 -1.7e +/- 308 +1.7e +/- 308
long double Quad precision floating point number (34 digits) [*]] 16 -1.0e +/- 4931 +1.0e +/- 4931

[*] only on 64 bit platforms.

Note that the unqualified char, short, int, (long int) are signed by default.

And unsigned integers are always positive and so have a larger positive range.

sizeof() operator

The unary operator sizeof () is used to calculate the size in bytes

of data types, variables, arrays or any object.
The following code

int i;
double d;
cout << "sizeof (int) = " << sizeof (int) << " bytes" << endl;

cout << "sizeof (fleoat) = << sizeof (float) << " bytes" << endl;
cout << "sizeof (double) " << sizeof (double)<< " bytes" << endl;

cout << "sizeof (i) = " << sizeof (i) << " bytes" << endl;
cout << "sizeof (d) = " << sizeof (d) << " bytes" << endl;
will output

sizeof (int) = 4 bytes

sizeof (float) = 4 bytes

sizeof (double)= 8 bytes

sizeof (1) = 4 bytes

sizeof (d) = 8 bytes

Constants

» Syntax:

##define constant name constant value

» As the name implies, variables store values that vary while constants
represent fixed values.

» Note that there is no storage when you use constants. Actually, when you
compile your program, the compiler replaces the constant name with the
value you defined.

» The pre-processor replaces every occurrence of constant name with
everything that is to the right of constant name in the definition.

» Note that there is no semicolon at the end of the definition.
Conventionally, we use names in uppercase for constants.

Example

#include <iostream>
using namespace std;

#define CURRENTYEAR 2014

int main(){
int year, age;
char myName;

cout<<"Enter the year you were born and your initial \n";
cin>> year >> myName;

cout<<"Your initial is: " <<myName ;

age = CURRENTYEAR - year;

cout<<"Your age is: "<<age;

return O;

Enumerated type

» Used to define your own types. Text in green is optional]
» Syntax:

enum type name {

item name=constant int value,
} variable 1list;

» By default, the value of the first item is 0, and it increases by one for
consecutive items. However, you may change the default value by specifying
the constant value explicitly.

» Eg: enum boolean {FALSE,TRUE} vl, v2;
enum days {SUN,MON, TUE,WED, THU,FRI, SAT};
enum {one=1l,five=5,six,seven,ten=10,eleven} num;
enum months

{JAN=1,FEB,MAR,APR,MAY, JUN, JUL,AUG, SEP,OCT,NOV,DEC} ;

Operators

» We will cover the most basic operators in class. More operators will be
covered in the labs.

» Assignment operator (=)

» Note that this is not the "equals” operator. It should be pronounced
as "becomes.” (Equals is another operator.)

» The value of the expression on the RHS is assigned (copied) to the
LHS.

» It has right-to-left associativity.
a=b=c=10;

makes all three variables 10.

Assignment and type conversion

» When a variable of a narrower type is assigned to a variable of
wider type, no problem.

» Eg: int a=10; float £;
f=a;

» However, there is loss of information in reverse direction.

» Eg: float £=10.9; int a;

a=f;

Operators

» Arithmetic operators (+,-,%,/,%)

» General meanings are obvious.

» What is important is the following: If one of the operands is of a
wider type, the result is also of that type. (Ilts importance will be
more obvious soon.)

» Eg: Result of int+float is float. Result of float+double is double.

» In C++ language, there are two types of division: integer division
and float division.

» If both operands are of integer class, we perform integer
division and the result is obtained by truncating the decimal
part.

»Eg: 8/31s2,not 2.666667.
» If one of the operands is of float class, the result is float.
»Eg: 8.0/30r8/3.00r8.0/3.0 i$2.666667, not 2.

Operators

» Remainder operator is $. Both operands must be of integer class.
» Eg: 10%6 is 4 (equivalent to 10 mod 6)
» +,-,*%,/,% have left-to-right associativity. That means a/b/c is equivalent

to (a/b)/c, but not a/ (b/c).

Operators

» Logic operators (&&, ||, !)
» Logic operators take integer class operands.
» Zero means false.

» Anything non-zero means true.

» "&&" does a logical-AND operation. (True only if both operands
are true.)

» "| |" does a logical-OR operation. (False only if both operands
are false.)

» "1" does a negation operation. (Converts true to false, and false
to true.)

Operators

o Logic operators follow the logic rules

a b ad&&b |al|b
true |ftrue |True true

true |false |false |true

false |true |false |true

false |false |false |false

The order of evaluation is from left to right
As usual parenthesis overrides default order

Operators

» If the first operand of the "&&" operator is false, the second
operand is not evaluated at all (since it is obvious that the
whole expression is false).

» Eg: In the expression below, if the values of b and c are
initially 0 and 1, respectively,

a =>b && (c=2)

then the second operand is not evaluated at all, so c keeps
its value as 1.

» Similarly, if the first operand of the "| |" operator is true, the
second operand is not evaluated at all.

Operators

» Other assignment operators (+=, -=, *=, /=, %=)

» Instead of writing a=a+b, you can write a+=b in short. Similar with -
=, *=, /=, and others.

Operators

» Pre/Post increment/decrement operators (++, --)
» The operator ++ increments the value of the operand by 1.

» If the operator comes BEFORE the variable name, the value of
the variable is incremented before being used, i.e., the value
of the expression is the incremented value. This is pre-
increment.

» In post-increment, the operator is used after the variable
name, and incrementation is performed after the value is used,
i.e., the value of the expression is the value of the variable
before incrementation.

Operators

Ex: a=10; c=10,
b=++a; d=c++;
Both a and ¢ will become 11, but b will be 11 while d is 10.

Ex:

X y
int x=10, y=20; 10 20
++x; 11 20
y= —--X; 10 10
x= x—-- +y; 19 10

y= X - ++x; 20 0

Operators

» Comparison operators (==,!=,<,<=,...)

» "=="is the "is equal to" operator. Like all other comparison
operators, it evaluates to a Boolean value of true or false, no
matter what the operand types are.

» IMPORTANT: When you compare two float values that are
supposed to be equal mathematically, the comparison may fail
due to the loss of precision discussed before.

Operators

Symbol |Usage |Meaning
== |xX==y |is X equal toy?
= |x!l=y [|is x not equal to y?
> X>y |is x greater thany?
< X<y |is x less than y?
>= |x>=y |is x greater than or equal to y?
<= |x<=y |is x less than or equal to y?

Operators

» We can create complex expressions by joining several expressions
with logic operators.

Symbol Usage Meaning

&& expl && exp2 |AND
1 expl || exp2 |OR

! | exp NOT

Operators

» While using multiple operators in the same expression, you should
be careful with the precedence and associativity of the operands.

» Eg: The following does NOT check if a is between 5 and 10.
bool = 5<a<10;

» bool will be true if a is 20. (Why?)

» Don’t hesitate to use parentheses when you are not sure about
the precedence (or to make things explicit).

Operator precedence table

Operator

Associativity

0O [

->

left-to-right

I I T

(type)

*

&

sizeof

right-to-left

* /

%

left-to-right

+

left-to-right

<<

>>

left-to-right

>

>=

left-to-right

left-to-right

left-to-right

left-to-right

left-to-right

left-to-right

left-to-right

right-to-left

<<=

>>=

right-to-left

left-to-right

Operators

» Precedence, associativity, and order of evaluation:

» In the table is given in the previous slide, precedence decreases as
you go down.

» If two operands in an expression have the same precedence, you
decide according to the associativity column.

» There is a common misunderstanding about associativity.

» Note that associativity has nothing to do with the order of
evaluation of the operands.

» Order of evaluation of operands is not specified in C++ language.

Type casting

» Also called coersion or type conversion.

» It does NOT change the type of a variable. It is not possible to
change the type of a variable.

» What casting does is to convert the type of a value.

Type casting

» Eg: int a=10, b=3;
float £, g;
f=a/b;
g=(float)a/b;

» The type of a does not change; it is still an integer. However, in the
expression (float)a/b, the value of a, which is 10, is converted to
float value of 10.0, and then it is divided by b, which is 3. Thus, we
perform float division and g becomes 3.3333. ..

» On the other hand, we perform an integer division for £, so it becomes

Precedence examples

» 1 *x 2 +4 3 *5 3 4 1+
> _/
| 1
2 + 3 *5 3% 4
> _/
' 1
2 4+ 15 3 4 \
D> \I/
2 4+ 3
> \ /

Mixing types

2.0+ 10 / 3 * 2.5 - 3.0/ 2

__/
T
2.0+ 3 *2.5-23.0/2
\ /
—
2.0 + 7.5 - 3.0/ 2
_/
T
2.0 + 7.5 - 1.5
\ I /
9.5 - 1.5
\ /

Basic intrinsic functions

An intrinsic or a library function is a function
provided by C++ language. For example the
cmath library contains the mathematical
functions/constants.

Some C++ library mathematical functions and constants defined in <cmath>

[Function Decleration Description [Example Result
cdouble fabs(double x): absolute value of real number, | x| fabs(-4.0) 4.0
int floor(double x): round down to an integer floor (-2.7) -3
int ceil (double x); round up to an integer |ceil(-2.7) -2
double sqrt({double x): square root of x sqrt(4.0) 2.0
double pow(double x, double yii |the value of x" [pow (2., 3.) 3.0
cdouble exp(double =): the value of €* exp(2.0) 7.38906
double log(double x): natural logarithm, logex = Inx log(4.0) 1.386294
double logl0(double =) base 10 logarithm, log1gx = logx logl0 (4.0) 0.602060
double sin(double x); sinus of x (x is in radian) sin(3.14) 0.001593
cdouble cos(double): cosine of x (x is in radian) lcos (3.14) -0.999899
cdouble tan(double x); tangent of x (x is in radian) Lan(3.14) -0.001593
double asin(double x); arc-sine of x in the range [-pif2, pi/2] asin(0.5) 0.523599
cdouble acos(double x); arc-cosine of x in the range [-pi/2, pi/2] acoz(0.5) 1.047198
double atan{double x): arc-tangent of x in the range [-pi/2, pi/2] atan(0.5) 0.463648
PI constant pi myPI = M_PI 3.141592...
&E constant e 2 =M E - 2.718281...

Some standard C++ library functions and constant defined in <estdlib>

[Function Decleration IDescription Example Result
int abs(int): Iabsnluteualuenfinteger number, || abs (-4) 4

int atoi(const char *s); !cunuerts string to integer atoi("-1234") -1234
double atof (const char *s)i lconverts a string to double atof ("123.54") 123.54
void exit(int status): terminates the calling process "immediately" lexit (1)

int rand(void): ménaaﬂh:{andum integer between 0 and rand () 1048513214
[RAND_MAX Thela;gestnumber rand() will return X = RAND MAX 2147483647

	Slide 1
	Slide 2: Course Information
	Slide 3: Syllabus
	Slide 4: A Computer System
	Slide 5
	Slide 6: A Computer System
	Slide 7: A Computer System
	Slide 8: CPU: Central Processing Unit
	Slide 9: How are the instructions executed ?
	Slide 10: How do we write programs ?
	Slide 11: Statement vs. Instruction
	Slide 12: Why have input/output ?
	Slide 13: Execution of an instruction
	Slide 14: Our first C++ program: Hello World
	Slide 15: Need for input
	Slide 16: A program that also performs input
	Slide 17: Problem Solving with Computers
	Slide 18: The Objective first:
	Slide 19: Algorithm and flowchart
	Slide 20: What is an Algorithm?
	Slide 21: Developing an Algorithm
	Slide 22: Program Development
	Slide 23: Step 1: Understanding the Problem
	Slide 24: Step 2: Represent the Algorithm
	Slide 25: Flowchart Symbols
	Slide 26: Exercise
	Slide 27: Mean of three integers Example
	Slide 28: “Weekly Pay” Example
	Slide 29: Flowchart
	Slide 30: Pseudocode
	Slide 31: Steps 3 and 4: Implementation and Testing/Debugging
	Slide 32: Algorithms and Language
	Slide 33: Control Structures
	Slide 34: Control Structures
	Slide 35: Sequence
	Slide 36: Decision Making
	Slide 37: Decision Making: Pseudocode
	Slide 38: Decision Making: Flowchart
	Slide 39: Looping
	Slide 40: Looping: Pseudocode
	Slide 41: Looping: Flowchart
	Slide 42: Looping: Flowchart
	Slide 43: Debugging
	Slide 44: Errors (“Bugs”)
	Slide 45: Syntax Errors
	Slide 46: Syntax Error Examples
	Slide 47: Logical Errors
	Slide 48: Flowchart components
	Slide 49: Algorithm and flowchart example 1
	Slide 50: Algorithm and flowchart example 2
	Slide 51: Algorithm and flowchart example 3
	Slide 52: Example 3: Determine Whether A Student Passed the Exam or Not: Algorithm: Step 1: Input grades of 4 courses M1, M2, M3 and M4, Step 2: Calculate the average grade with formula "Grade=(M1+M2+M3+M4)/4" Step 3: If the average grade is less than 60,
	Slide 53: Find the largest among three different numbers entered by the user.
	Slide 54: Find all the roots of a quadratic equation ax2+bx+c=0
	Slide 55: Exercise #2
	Slide 56: Variables
	Slide 57: Variables
	Slide 58: Variables
	Slide 59: Variables
	Slide 60: Rules for identifier names
	Slide 61: Rules for identifier names
	Slide 62: Standard data types
	Slide 63: Integers
	Slide 64: Integers
	Slide 65: Integers
	Slide 66: Floating-point numbers
	Slide 67: Floating-point numbers
	Slide 68: Floating-point numbers
	Slide 69: Characters
	Slide 70: Characters
	Slide 71: Characters
	Slide 72: ASCII table (partial)
	Slide 73: Characters
	Slide 74: Characters
	Slide 75: Characters
	Slide 76:
	Slide 77: sizeof() operator
	Slide 78: Constants
	Slide 79: Example
	Slide 80: Enumerated type
	Slide 81: Operators
	Slide 82: Assignment and type conversion
	Slide 83: Operators
	Slide 84: Operators
	Slide 85: Operators
	Slide 86: Operators
	Slide 87: Operators
	Slide 88: Operators
	Slide 89: Operators
	Slide 90: Operators
	Slide 91: Operators
	Slide 92: Operators
	Slide 93: Operators
	Slide 94: Operators
	Slide 95: Operator precedence table
	Slide 96: Operators
	Slide 97: Type casting
	Slide 98: Type casting
	Slide 99: Precedence examples
	Slide 100: Mixing types
	Slide 101: Basic intrinsic functions
	Slide 102:
	Slide 103:

