


Course Information
 Name of the Course: OPTIMIZATION

 Lecturer: Dr. Seydi Kaçmaz

 Office: 201 , E-mail: seydikacmaz@gantep.edu.tr

 Web Announcements:
https://akbis.gantep.edu.tr/detay/?A_ID=149283_doktor-
ogretim-uyesi_seydi-kacmaz
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 Prerequisites
Linear algebra (matrices, vectors)

Basic calculus

Signal processing

Matlab

 Text Book and References:
1- Algorithms for Optimization (The MIT Press), Tim A. Wheeler, Mykel J. Kochenderfer, 2019

2- S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004.
(available at http://www.stanford.edu/~boyd/cvxbook/)

Course Layout
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 Introduction
 Derivatives and Gradients
 Bracketing
 Local Descent
 First-Order Methods
 Second-Order Methods
 Direct Methods
 Stochastic Methods
 Population Methods
 Constraints
 Linear Constrained Optimization
 Multiobjective Optimization
 Sampling Plans
 Surrogate Models
 Probabilistic Surrogate Models
 Surrogate Optimization
 Optimization under Uncertainty
 Uncertainty Propagation
 Discrete Optimization
 Expression Optimization
 Multidisciplinary Optimization

Course Content
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Homeworks : %30

Project (Journal Implementation) : %20

Presentation    : %10

Written Final Exam : %40

Grading
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Introduction
 Many disciplines involve optimization at their core. 

 In physics, systems are driven to their lowest energy state subject to physical laws. 
 In business, corporations aim to maximize shareholder value. 
 In biology, fitter organisms are more likely to survive. 

 This lecture will focus on optimization from an engineering perspective, where the 
objective is to design a system that optimizes a set of metrics subject to constraints. 

 The system could be a complex physical system like an aircraft, or it could be a simple 
structure such as a bicycle frame. The system might not even be physical; for example, 
we might be interested in designing a control system for an automated vehicle or a 
computer vision system that detects whether an image of a tumor biopsy is cancerous. 
We want these systems to perform as well as possible. 

 Depending on the application, relevant metrics might include efficiency, safety, and 
accuracy. 

 Constraints on the design might include cost, weight, and structural soundness.
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Introduction
 Optimization is the act of obtaining the best result under given circumstances. 

 Optimization can be defined as the process of finding the conditions that give
the maximum or minimum of  a function.

 The optimum seeking methods are also known as mathematical programming
techniques and are generally studied as a part of operations research.

 Operations research is a branch of mathematics concerned with the 
application of scientific methods and techniques to decision making problems
and with establishing the best or optimal solutions.
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Introduction
 Applications of Optimization

 Physics

 Business

 Biology

 Engineering

 Objectives to Optimize

 Efficiency

 Safety

 Accuracy
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• Constraints
• Cost

• Weight

• Structural Integrity

• Challenges
• High-Dimensional Search Spaces

• Multiple Competing Objectives

• Model Uncertainty



Introduction
 Operations research (in the UK) or operational research (OR) (in the 

US) or yöneylem araştırması (in Turkish) is an interdisciplinary branch of 
mathematics which uses methods like:

 mathematical modeling
 statistics
 algorithms to arrive at optimal or good decisions in complex problems which are

concerned with optimizing the maxima (profit, faster assembly line, greater crop yield, 
higher bandwidth, etc) or minima (cost loss, lowering of risk, etc) of some objective
function. 

 The eventual intention behind using operations research is to elicit a best
possible solution to a problem mathematically, which improves or
optimizes the performance of the system. 
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A History
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 Isaac Newton (1642-1727)

(The development of differential calculus methods of optimization)

 Joseph-Louis Lagrange (1736-1813)

(Calculus of variations, minimization of functionals,

method of optimization for constrained problems)

 Augustin-Louis Cauchy (1789-1857)

(Solution by direct substitution, steepest

descent method for unconstrained optimization) 



A History
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 Leonhard Euler (1707-1783)

(Calculus of variations, minimization of functionals)

 Gottfried Leibnitz (1646-1716)

(Differential calculus methods of optimization) 



A History
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 George Bernard Dantzig (1914-2005)

(Linear programming and Simplex method (1947))

 Richard Bellman (1920-1984)

(Principle of optimality in dynamic programming problems) 

 Harold William Kuhn (1925-)

(Necessary and sufficient conditions for the optimal solution of programming problems, 

game theory)



A History
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 Albert William Tucker (1905-1995)

(Necessary and sufficient conditions

for the optimal solution of programming

problems, nonlinear programming, game

theory: his PhD student

was John Nash)

 Von Neumann (1903-1957)

(game theory)



A History
 Calculus
The concept of calculus, or the study of continuous change, plays an important role in our discussion of optimization. Both 
differential and integral calculus make use of the notion of convergence of infinite series to a well-defined limit.

 Numerical Algorithms
The mid-twentieth century saw the rise of the electronic computer, spurring interest in numerical algorithms for optimization. The 
ease of calculations allowed optimization to be applied to much larger problems in a variety of domains.

 Artificial Intelligence
Decades of advances in large scale computation have resulted in innovative physical engineering designs as well as the design of 
artificially intelligent systems.

 The optimization of deep neural networks is fueling a major revolution in 
artificial intelligence that will likely continue.
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Optimization Process
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A typical engineering design optimization process is shown in figure. The role of the designer is to provide a 
problem specification that details the parameters, constants, objectives, and constraints that are to be 
achieved. The designer is responsible for crafting the problem and quantifying the merits of potential
designs. The designer also typically supplies a baseline design or initial design point to the optimization 
algorithm.



Optimization Process
 Optimization is about automating the process of refining the design to 

improve performance. 

 An optimization algorithm is used to incrementally improve the design 
until it can no longer be improved or until the budgeted time or cost has
been reached. 

 The designer is responsible for analyzing the result of the optimization
process to ensure its suitability for the final application. 

 Misspecifications in the problem, poor baseline designs, and improperly 
implemented or unsuitable optimization algorithms can all lead to 
suboptimal or dangerous designs.
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Basic Optimization Problem
 x is a Design Point

 Design Variables [x1, x2, · · · , xn]

 Objective Function f

 Feasible Set X

 A solution or Minimizer
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Any value of x from among all points in the feasible set X that minimizes the objective function is called a 
solution or minimizer. A particular solution is written x∗. 



Basic Optimization Problem
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Figure shows an example of 
a one-dimensional optimization problem.
Note that the minimum is merely the best 
in the feasible set—lower points may exist
outside the feasible region.



Constraints
 Many problems have constraints. Each constraint limits the set of possible 

solutions, and together the constraints define the feasible set X. Feasible 
design points do not violate any constraints. For example, consider the 
following optimization problem and the feasible set that is plotted in 
figure.
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Constraints
 Constraints are typically written with ≤, ≥, or =. If constraints involve < or > 

(i.e., strict inequalities), then the feasible set does not include the constraint
boundary. A potential issue with not including the boundary is illustrated by 
this problem and the feasible set that is shown in figure
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The point x = 1 produces values smaller than any x greater than 1, but x = 1 is not feasible. We can pick any x 
arbitrarily close to, but greater than, 1, but no matter what we pick, we can always find an infinite number of values 
even closer to 1. We must conclude that the problem has no solution. To avoid such issues, it is often best to include 
the constraint boundary in the feasible set.



Critical Points
 Univariate Function

 Figure shows a univariate 
function f(x) with several 
labeled critical points,(The term 
univariate describes objects 
involving one variable.) where 
the derivative is zero, that are of 
interest when discussing 
optimization problems. 
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Critical Points
 Univariate Function

 When minimizing f , we wish to find a global 
minimizer, a value of x for which f (x) is 
minimized. A function may have at most one 
global minimum, but it may have multiple 
global minimizers.

 Unfortunately, it is generally difficult to prove 
that a given candidate point is at a global 
minimum. Often, the best we can do is check 
whether it is at a local minimum. 
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Critical Points
 Figure shows two types of local minima: strong local minima and weak local minima. 

A strong local minimizer, also known as a strict local minimizer, is a point that 
uniquely minimizes f within a neighborhood. A weak local minimizer is a local 
minimizer that is not a strong local minimizer.

 The derivative is zero at all local and global minima of continuous, unbounded
objective functions. While having a zero derivative is a necessary condition for a local 
minimum, it is not a sufficient condition.

 Figure also has an inflection point where the derivative is zero but the point does not 
locally minimize f . An inflection point is where the sign of the second derivative of f 
changes, which corresponds to a local minimum or maximum of f ′. An inflection 
point does not necessarily have a zero derivative.
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Conditions for Local Minima
 Many numerical optimization methods seek local minima. Local minima are

locally optimal, but we do not generally know whether a local minimum is a 
global minimum. The conditions we discuss in this section assume that the 
objective function is differentiable.

 Univariate Function

 A design point is guaranteed to be at a strong local minimum if the local 
derivative is zero and the second derivative is positive:

1. f ′(x∗) = 0

2. f ′′(x∗) > 0

 A zero derivative ensures that shifting the point by small values does not affect the 
function value. A positive second derivative ensures that the zero first derivative 
occurs at the bottom of a bowl.
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Conditions for Local Minima
 Univariate Function

A point can also be at a local minimum if it has a zero derivative and the 
second derivative is merely nonnegative:

1.  = 0, the first-order necessary condition (FONC)

2.                      , the second-order necessary condition (SONC)
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Conditions for Local Minima
 Univariate Function

These conditions are referred to as necessary because all local minima 
obey these two rules. Unfortunately, not all points with a zero derivative 
and a zero second derivative are local minima, as demonstrated in figure.
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Conditions for Local Minima
 Multivariate Functions

The following conditions are necessary for x to be at a local minimum of f :

1. , the first-order necessary condition (FONC)

2.  , the second-order necessary condition (SONC)

 The FONC and SONC are generalizations of the univariate case. 
The FONC tells us that the function is not changing at x. Next
figure shows examples of multivariate functions where the FONC 
is satisfied. The SONC tells us that x is in a bowl.
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𝛻𝑓 𝑥 = 0

𝛻𝑓 𝑥 ≥ 0



Conditions for Local Minima
 While necessary for optimality, the FONC and SONC are not sufficient for optimality. For 

unconstrained optimization of a twice-differentiable function, a point is guaranteed to be at a 
strong local minimum if the FONC is satisfied and is positive definite. These conditions are 
collectively known as the second-order sufficient condition (SOSC).
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Contour Plots
 This lecture will include problems with a variety of numbers of dimensions, 

and will need to display information over one, two, or three dimensions. 

 Functions of the form f(x1, x2) = y can be rendered in three-dimensional space, 
but not all orientations provide a complete view over the domain. 

 A contour plot is a visual representation of a three-dimensional surface 
obtained by plotting regions with constant y values, known as contours, on a 
two-dimensional plot with axes indexed by x1 and x2. 
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Contour Plots
 𝑓 𝑥1, 𝑥2 = 𝑥1

2 − 𝑥2
2
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This function can be visualized in a three dimensional space based on its two inputs and one output. It 
can also be visualized using a contour plot, which shows lines of constant y value. A three-dimensional 
visualization and a contour plot are shown below.



Overview
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Summary
 Optimization in engineering is the process of finding the best system 

design subject to a set of constraints

 Optimization is concerned with finding global minima of a function

 Minima occur where the gradient is zero, but zero-gradient does not imply 
optimality
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