
EEE 204
Analog to Digital Converters

CHAPTER 9

Asst. Prof. Dr. Mahmut AYKAÇ

2

Analog to Digital Converters
ADCs allow embedded computers to convert analog voltages into digital values so that

they can be monitored in real-time and trigger responses. The MSP430F5529 contains a
12-bit ADC core that can perform conversions on up to 16 user-selected inputs.

An analog-to-digital converter (ADC or A2D) is a circuit that takes in an analog voltage
and produces a digital representation of its value. ADCs consist of two stages, a sample-
and-hold stage and a conversion stage.
When the sample-and-hold stage is activated, it makes momentary contact with the

input signal and allows it to charge a capacitor within the sample circuit. The goal of this
momentary contact is to charge the capacitor to the same voltage as the input. The
sample-and-hold circuitry is designed so that this can be accomplished very quickly so
that it can disconnect from the input signal as soon as possible to avoid altering its signal
integrity. The action of duplicating the voltage value of the input signal is called a sample.
A capacitor is able to hold this voltage for a brief amount of time, thus providing the hold
functionality of the sample-and-hold circuit. The conversion stage then produces a digital
value that represents the analog value held on the capacitor.

3

Analog to Digital Converters
The conversion of the analog sample into a digital number is called digitizing, quantizing, or

discretizing the value. All of these terms refer to how a continuous analog signal is converted
into a set of discrete digital numbers. An ADC has an analog input range that it digitizes across.
The range is provided to the ADC using two inputs, the voltage reference high (𝑉ோା) and the
voltage reference low (𝑉ோି).

ADCs can be configured to sample periodically. The speed at which samples are collected is
called the sample rate and typically has units of kilo-samples-per-second (ksps) or Mega-
samples-per-second (Msps). If the sample rate is sufficiently faster than the frequency of the
input signal, then an accurate representation of the input signal can be reconstructed using the
samples.

4

Analog to Digital Converters
Figure shows the concept of operation of a basic ADC.

The resolution of an ADC refers to how
many bits wide (n) the digital output value
is. Common resolution values in MCUs are
8-bit, 10-bit, and 12-bit. The larger the
resolution, the more accurate the
conversion of the input signal is.
The precision of an ADC is the smallest

voltage that the LSB of the digitized
number can represent. The resolution is
found by dividing the input voltage range
by 2௡ (i.e., (𝑉ோା - 𝑉ோି)/2௡).
The actual analog voltage that the ADC

result represents can be found by
multiplying the result, the number that is
read from the ADC, (𝑁஺஽஼) by the
resolution.
 𝑽𝒂𝒏𝒂𝒍𝒐𝒈= 𝑵𝑨𝑫𝑪 ൉precision

The accuracy of an ADC states how close
its digital output is to the actual input
signal voltage. An ADC will only ever be
able to get within ±½LSB of the original
input signal due to the way that the input
range is divided into discrete values that
are 1 LSB apart from each other. The
accuracy of a sample gives a range of
voltages that the final digital output lies
within
𝑽𝒂𝒏𝒂𝒍𝒐𝒈= 𝑵𝑨𝑫𝑪 ·precision ±½LSB
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = ±½LSB

5

Analog to Digital Converters (Examples)

Remember that the precision is equal to LSB!

6

ADC Operation on the MSP430F5529
TheMSP430F5529 contains an ADC core with

selectable resolution (8-bit, 10-bit, or 12-bit). The
ADC can be driven with 1 of 16 inputs that are
selected using an analog multiplexer that sits in
front of the ADC core. The ADC clock source is
selectable with two stages of programmable
dividers/prescalers. The voltage range of the ADC
is also programmable with options of using the
power supply (Vcc) and GND (Vss), input pins, or a
variety of internally generated voltages.

Analog Multiplexer

7

ADC Operation on the MSP430F5529
The basic use model for the ADC peripheral is that it is first configured using a set of registers, then the

conversion is started by the user (or by the successful completion of a prior conversion), and then the result of
the conversion can be read from the ADC’s conversion memory register. Flags can be used to track the status of
the conversion and trigger interrupts to react to various states of the conversion (i.e., conversion complete). The
complete list of ADC registers on the MSP430F5529 MCU is as follows:
• ADC Control 0 (ADC12CTL0) Register
• ADC Control 1 (ADC12CTL1) Register
• ADC Control 2 (ADC12CTL2) Register
• ADC Memory Control (ADC12MCTL0) Register
• ADC Conversion Memory (ADC12MEM0) Register
• ADC Interrupt Enable (ADC12IE) Register
• ADC Interrupt Flag (ADC12IFG) Register
• ADC Interrupt Vector (ADC12IV) Register

 The ADC is configured using four main registers: ADC12CTL0,
ADC12CTL1, ADC12CTL2 and ADC12MCTL0. We will go through
the settings in each of these registers that are needed to get a
basic ADC program working. The ADC12CTL0 register contains
the settings for the number of ADC12CLK cycles to use during
the conversion (ADC12SHTxx), how the ADC is triggered
(ADC12MSC), turning the ADC on (ADC12ON), enabling the
conversion (ADC12ENC), and starting a conversion (ADC12SC).
The ADC12ENC and ADC12SC bits are used to start a conversion
by asserting them simultaneously. All other settings are done in
the initialization portion of the program.

8

ADC Control Register (ADC12CTL0)

Mostly required for; ADC clock cycles (ADC12SHTxx)
ADC Turning On (ADC12ON)
ADC Conversion Enable (ADC12ENC)
ADC Sampling and Conversion start (ADC12SC)

9

ADC Control Register (ADC12CTL1)

Mostly required for; ADC sampling source (ADC12SHP)
ADC clock divider (ADC12DIVx, x=0 as default)
ADC clock source select (ADC12SSELx)

In our board,
MCLK=SMCLK=1MHz

10

ADC Control Register (ADC12CTL2)

 The ADC12CTL2 register contains settings for the first clock
divider stage (ADC12PDIV), the resolution of the ADC
(ADC12RES), the data format of the result (ADC12DF), and
the range for the anticipated sample rate (ADC12SR). Note
that the default setting for ADC12RES is 01 (10-bit).

11

ADC Conversion Memory Control Register (ADC12MCTL0)

 The ADC12MCTL0 register contains settings for the reference voltage
selection (ADC12SREFx) and the ADC input channel that will be routed
to the sample-and-hold stage (ADC12INCHx). For the ADC12SREFx
settings, “VREF” refers to the internal reference voltages that the MCU
can produce while “VREF+/-” refers to external pins. Also, “AVCC” refers
to the MCU power supply (+3.4 v) while “AVSS” refers to the MCU
ground (0v). The ADC12INCHx setting allows 1 of 16 different input
channels to be chosen. Of these 16 channels, 12 can come from MCU
port pins. If any of these 12 port pins are to be used, they must also be
configured for ADC by using PxSEL. Making the corresponding bit 1 in
PxSEL register makes that bit analog input.

 Default value in ADC12SREFx is 0, which makes VREF+= VCC, VREF-= VSS

where x=0

Mostly required part!

12

ADC Interrupt Registers (ADC12IE)
The ADC peripheral contains interrupt flag that can be
used to monitor the status of the conversion. There is an
interrupt flag that will trigger when a conversion is
complete (ADC12IFGx). This interrupt is maskable and are
locally enabled within the ADC12IEx register

13

ADC Interrupt Registers (ADC12IFG)
The ADC peripheral contains interrupt flag that can be
used to monitor the status of the conversion. There is an
interrupt flag that will trigger when a conversion is
complete (ADC12IFGx). This interrupt is maskable and are
locally enabled within the ADC12IEx register

14

Analog to Digital Converters (Example)
Ex: Design a program to use the ADC on the MSP430F5529 to digitize an analog voltage on P6.2. This pin can be driven on the
LaunchPad board using a function generator. We will drive a sine wave voltage into P6.2 that goes from 0V to +3.4V. We will
continually digitize this signal and assert the LEDs depending on its value. When P6.2 is below +3.0V, LED2 (P4.7) will be
asserted(ON) and LED1 (P1.0) will be off. When P6.2 is above +3.0V, LED1 will be asserted(ON) and LED2 will be off.

Solution: The first step to set up the ADC for this design is to use the P6SEL registers to configure P6.2 to use its analog
function (A2). Within the ADC12CTL0 register, we will set the number of conversion cycles to 16 using ADC12SHT and turn the
ADC on using ADC12ON. Within ADC12CTL0 we do not need to use ADCMSC because we are not going to use repeated mode.
Within ADC12CTL1 we will select SMCLK as the ADC clock source using ADSSELx and select the sample timer as the source for
the sample trigger using (ADC12SHP).We will use the default values for ADC12SHS (use ADC12SC to trigger sample),
ADC12ISSH (no inversion), and ADC12DIVx (no clock division, which means division by 1). We will also accept the default value
for ADC12CONSEQx, which is to configure the ADC for a single-channel, single-conversion that is triggered by user. This means
each conversion will need to be manually started. Within ADC12CTL2 we will set the resolution to 12-bits using ADC12RES. We
will use the default values for ADC12PDIVx (no clock division which means division by 1), ADC12DF (data formatted as
unsigned binary), and ADC12SR (support for sample rates up to ~200 ksps). Within ADC12MCTL0 we will set the ADC input
channel to A2. We will accept the default values for ADC12SREFx, which uses 𝑉ோା = VCC and 𝑉ோି = 0V.

Within the main program loop, we will start the conversion by simultaneously asserting ADC12ENC and ADC12SC in the
ADC12CTL0 register. After the conversion starts, we will wait in a polling loop until the conversion is finished by monitoring
ADC12IFG0. After the conversion completes, we will read the result from the ADC12MEM0. Reading ADC12MEM0 will clear
ADC12IFG0. We will then have logic to set the LEDs according to the ADC result.

15

Analog to Digital Converters (Example)

Fig. Graphical representation
of the solution

16

Analog to Digital Converters (Example)
#include <msp430.h>
unsigned int ADC_value;// An unsigned integer variable to hold the ADC Value

int main(void)
{
WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer
P1DIR |=BIT0; //P1.0 is output
P4DIR |=BIT7; //P4.7 is output
P6SEL |=BIT2; // Analog input as A2 on P6.2

ADC12CTL0 = ADC12SHT02 + ADC12ON; //16 ADC clock cycles and ADC is ON can also be ADC12CTL0 |= ADC12SHT02 | ADC12ON
ADC12CTL0 |= ADC12ENC; //Enable the conversion

ADC12CTL1 |= ADC12SHP; //Use sampling timer
ADC12CTL1 |= ADC12SSEL_2; //ADC clock source is SMCLK, SMCLK=1MHz

ADC12CTL2 |= ADC12RES_2; //Resolution is 12‐bit, n=12

ADC12MCTL0 |= ADC12INCH_2;// Use A2 as analog input, which corresponds to P6.2 on LaunchPad board
while(1)
{

ADC12CTL0 |= ADC12SC; //Start sampling/ conversion
while((ADC12IFG & ADC12IFG0)==0); //wait for conversion to complete
ADC_value=ADC12MEM0; //Read the analog value and save in ADC_value variable

if (ADC_value>3614) //If A2>3v… 3.4/2^12=0.000830. 3/0.000830 = 3614
{

P1OUT|=BIT0; //LED1=ON
P4OUT &= ~BIT7; //LED2=OFF

}
else // IfA2<3V
{

P1OUT &= ~BIT0; //LED1=OFF
P4OUT |= BIT7; //LED2=ON

}
}
return 0;
}

