EEE 204
Pull up/down Resistors and
Timers

Pull Up and Pull down Resistors

A Pull-up resistor is used to make the default state of the digital pin as High(Logic 1).

A Pull-down resistor is used to make the default state of the digital pin as Low(Logic 0).

+Vcc +\Vcc
Pull-Up / Switch
Resistor
MCU
/ Switch MCU
Pull-Down
Resistor

Pull-Up and Pull-Down Resistors

* Pull- up and pull-down resistors are used only when the corresponding bits are
inputs. (To determine the default state of the input pins.)

* Il Remember that MSP430 board has logic 1 on its inputs(P2.1 and P1.1) as
default. Now it is possible to change the default values.

* PXREN register is employed to activate/deactivate the pull-up and pull-down
resistors.

* To use them correctly, the table given below must be employed.

PxDIR PXREN PxOUT 1/0 Config

0 0 X Input with resistors disabled

3 3 : et inernal Palldomenabled Table. The way of using pull-up and pull-down resistors
0 1 1 Input with Internal Pullup enabled

1 X X Output - PxREN has no effect

Pull-Up and Pull-Down Resistors

Ex. Write code block that makes the pins P1.3<—>P1.0 with pull-down enabled.
P1DIR=0xFO; //P1DIR=11110000, desired pins are inputs (P1.0..,P1.3)
P1REN=0xOF; //P1REN=00001111 Pull up or down is enabled
P10UT=0; //P10UT=00000000 Pull-down is enabled
Ex. Do the same with pull-up enabled.

P1DIR=0xFO;// P1DIR=11110000, desired pins are inputs
P1REN=0XOF;// P1REN=00001111 Pull up or down is enabled
P10UT=0x0F;// P10UT=00001111 Pull-up is enabled

Pull-Up and Pull-Down Resistors

Ex. Write a C program by using C Language that turns the LED ON Ex: Same example with different way...
connected to P4.7 if P2.1is pressed. #include <msp430.h>
#include <msp430.h> #def%ne BUTTON P2IN
#define BUTTON P2IN #define LED PA0UT

) int main(void)
#define LED P40UT {
int main(void) WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
{ P2DIR=0x00; //P2DIR=0000000, P2 is input
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer P2REN=OxFD; //P2REN=11111101, all input pins are
P2DIR=0x00; //P2 is input pull-up/down enabled except P2.1
PADIR=OXFF; //P4 is output P20UT=0; //Pull-down input pins except P2.1
PAOUT=0x00; //Clear P4 PADIR=OxFF; //P4 is output
while(1) //Always check! PA0UT=0x00; //Clear P4
{ while(1) //Always check!

if (BUTTON==OxFD) //Means “If button is pressed” { if (BUTTON==0X@@) //Means “If button is pressed”

{ {

LED |= BIT7; //LED is ON LED |= BIT7; //LED is ON

} }

} }
return @; return 0;
} }

Timers

* A timer is a binary counter that is clocked from a free-running clock with a known frequency.
Since the binary counter will increment on the triggering edge of the clock and the clock
frequency is known, then the time between count values is deterministic. The time elapsed can

be found by simply multiplying the period of the clock (T = 1/f) by the number of counts that
have occurred (N).

Ti T
T = Period = 1/f (sec) imer Timer Output

f = Frequency (Hz) 16-Bit Timer
Clock —>

“4—— Period (T)

Timer —
Clock _| = |
Ti
output | 0000h | 0001h | 0002h [0003 | == |FFFER|FFFFh | 0000h | 0001h
|4_;| The time between ’ '
consecutive counts is T. The timer will
Li . overflow at 2"
i~ | counts, or
The time between any twolq N feiei?f:fnft‘; this
count values is At=T-N. ! '

Timers

Ex. Calculate how much time (At) elapses between when a 16-bit timer is cleared and when it
reaches the value of ABCDH if clock frequency is 1MHz.

Timer Qutput
Compare Value = %ga
16-Bit Timer y

Timer ABCEh

Timer > Output :
Cloc 0002h
. 0001h

f=1MHz Start Value = 0000h >
> Time
Time Elapsed
At=T-N

F=1/T> T=1/f= 1/(1MHz)= 1us (time that elapses for each count)
N= ABCDH= 43981 in decimal (total number of counts)
At=T-N=1u-43981=43, 981ms

Timers

Ex: Calculate the time overflow period of a 16-bit timer if the clock frequency is 32.768kHz.

Timer Output i

16-Bit Timer Timer Max Value = EEEEE
Timer Output 3
Clock 0002h

f=32.768 kHz Start Value = 0000h

Time Elapsed = Toverfiow Time
At=T-N
At=T-2"
F=1/T> T=1/f= 1/(32.768kHz)=30,518us (time that elapses for each count)
N= FFFFH= 65536 in decimal (total number of counts)

At=T-N=30,518u - 65536 = 2s

Timers

The full MSP430 architecture contains three distinct timer sub-systems: Timer_A,
Timer_B, and the real-time clock counter (RTC). Within the Timer A and Timer_B
systems, there are multiple, independent binary counters that provide separate timing
capability. Each timer can generate interrupts when its value either matches a value
placed into a compare register, or when it overflows. The timers also have the ability to
capture the current count value and store it into a register upon a triggering event. The
Capture and Compare Registers (CCRs) are shared and referred to as capture/compare
blocks in the MSP430 documentation.

We will use ONLY Timer_B for the sake of simplicity

Timer Overflows

The MSP430F5529 Timer_B system provides one independent timer (TBO) with selectable
clock inputs and the ability to divide down the clock to get slower counting frequencies.
Timers TBO has seven capture/compare (CC) registers associated with them.

Figure shows an overview of the Timer_B architecture implemented on the MSP430F5529.

MSP430 Clock Options

IDEX
TBSSZEL IDz 3 Name Description Used-by Typical Speed
TBxCLK—{o0 { + . 16-Bit Timer 0 MCLK Master Clock CPU Fast
(32.768 kHz) ACLK—{o1 Divider Divider [;||:ce|: i, s - TBXR 0O SMCLK Sub-Master Clock Peripherals Fast
(IMHz) SMCLK=10 1(5‘:?5)8 (113/18) > Clear Length Control 0 ACLK Auxiliary Clock Peripherals Slow

INC
LK=—q1 | I + }«2 l,Z Clocks — Fast or Slow
+ All MSPA430 devi
TBCLR CNTL MC provide at Ieaes: ;ecslocks Clock - Sl
by choice of clock: ACLK +

Tune system peripherals
GPIO LCD

SMC

« Fast = Performance MCLK
+ Slow = Llow-power

TBIE — Timer Overflow Tracking (—TBIFG * [avaowcodeate oo K aoe

Timer Overflows

The first setting available for the timer clock is its source (TBSSEL). The timer system clock can
come from one of two external pins (TBXCLK or INCLK) or from one of two on-chip clock sources
(ACLK or SMCLK). On the MSP430F5529 LaunchPad, ACLK has a frequency of 32.768 kHz and

SMCLK has a frequency of 1 MHz. The timer system also allows the user to divide down the
incoming clock source in order to achieve even slower counting frequencies. There are two
clock dividers implemented in series in the Timer_B system. The first divider (ID) can divide
the clock by 1, 2, 4, or 8. The second divider (IDEX) can divide the clock by 1, 2, 3,4, 5, 6, 7
or 8. Since these two dividers are in series, there are 32 different divider settings that can be
applied to the clock ranging from a minimum divider of 1 to a maximum divider of 64.

When the Timer_B is put into continuous counting mode, it will count up to its maximum value and
then roll-over to 0. When it goes from its maximum value (i.e., FFFFh for 16-bit counting mode) to
0000h, a timer overflow is detected and can generate an interrupt. The local enable for this overflow
interrupt is TBIE. This interrupt is maskable, so its global enable is GIE. When enabled, the interrupt
will assert the timer overflow flag TBIFG.

Timer Overflows

All of the settings to control the Timer_B system(s) and use its timer overflow interrupts are held in
two configuration registers, the Timer_B Control Register (TBXCTL) and the Timer_B Expansion
Register O (TBXEXO). Figures 1 and 2 give the details of the TBXCTL and TBXEXO registers respectively.

Timer_B Control Register (TBxCTL) x=o
p: 15 14 13 122 11 10 9 8 [§] -] 4 3 2 1 0
- w[, rofmace] om jwimse | o | w |wserjeejeg Timer_B x Expansion Register 0 (TBXEX0)
s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 =
e T p: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
15 |Reseved |-
1413 TBCLGRP | Timer_B Compare Lalch Groupings (see devioa specific data shaet for info) Rsv IDEX
Counter Longth
1211{conn 0=15.n 10=1000 V;lel;eegn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 |Reserved - P
08 [TBSSEL | COMBMGAN (oama sy 10<SMCLK (IMHz) Bit | Field Description
01=ACLK (32.768 KHz) 11=INCLK (external pin)
e lo 1%1&%3\?« 15:3 | Reserved -
. 10=Divide by 4
"c:deo;nco r;y: 11=Divide by 8 Input Clock Divider Expansion
00=Stop Mode. Timer is Halted 000=Divide by 1 100=Divide by 5
54 |MC 01eUp Moce :“.;‘?;,‘“ﬁ?:ﬁ??‘ﬁ&?i:?;t“;&ﬁﬁ“’. 2.0 |IDEX 001=Divide by 2 101=Divide by 6
11=Up/Down Mode: Timer counts up to TBxCLO and down 1o 0000h 010=Divide by 3 110=Divide by 7
A i B 011=Divide by 4 111=Divide by 8
2 |TBCLR Timer_B Clear. Settng this bit clears he timer and the clock dviders.
1 |TBIE Timer_B Intarrupt Enable (0~IRQ Disabled; 1=IRQ Enabled)
3 [TBIFG |Tmer_B Inermupt Fiag (9=No IRG Pending. 1+IRQ Pending) Fig.2. Timer_B expansion register 0 (TBXEXO0) details

Fig.1 Timer_B control register (TBxCTL) details

Timer Overflows

Let’s now look at using a timer overflow to generate an event at a specific time interval. The
recommended sequence of programming steps to configure the counter is as follows:

1. Write a 1 to the TBCLR bit (TBCLR =1) to clear TBxR.

2. Apply desired configurations to TBXCTL (Figure 1 in the previous page)

TBSSEL: Clock source selection (mostly ACLK or SMCLK)

ID: First frequency divider (1, 2, 4 or 8)

IDEX: Second frequency divider (1, 2, 3, 4, 5, 6, 7 or 8. Apart from others, It is in TBXEXO, check Figure 2)
CNTL: Counter length (8-bit, 10-bit, 12-bit, 16-bit)

MC: Mode Control (Counting style and direction, check Figure 1)

TBIE: Enabling interrupt

3. Clear interrupt flag TBIFG, for further use before and after

Timer Overflows

Ex. An example of using the TBO timer to generate an interrupt every 2s. In this example, TBO will
use ACLK as its source and use the default settings of the two clock dividers (i.e., divide-by-1). The
timer will run with a 16-bit length (default) and in continuous mode so that overflows happen
indefinitely. When a timer overflow occurs, an interrupt will be triggered.

ACLK=32.768kHz and there is no division of the clock source Vimerumt g

Toverflow= T-N= (1/f) -:2~n=(1/32.768) - 2216= 2 seconds

TBSSEL=01 ID=00 IDEX=000

>
> :
3 Tovermow = At=T'N Time

TBxCLK Timer 16-Bit Timer |+ TBOR
(32.768 kHz) ACLK > Counter Mode From Figure 1 and 2
Sl"N"gﬁ 1 (def) | 5,755 ¢_Clear Length Control TBSSEL=01 (ACLK is active, 32.768kHz)
L J + 2P ID=0 (1 divider is 1)
TBCLR CNTL=00 MC=10 IDEX=000 (2" divider is 1)
CNTL=00 (16-bit counter)

_ MC=10 (Continuous mode, count up to end)
TBIE=1 — VimerOverflow Tracking [—TBIFG ygjg=1 (Timer overflow interrupt is enabled,

otherwise timer doesn’t create interruet!

Timer Overflows

Ex. An example of using the TBO timer to generate an interrupt every 125ms. In this example, TBO
will use ACLK as its source and use the default settings of the two clock dividers (i.e., divide-by-1).
The timer will run with a 12-bit length and in continuous mode so that overflows happen
indefinitely. When a timer overflow occurs, an interrupt will be triggered.

ACLK=32.768kHz and there is no division of the clock source s

FEEh fo==--===--2
FFEh
Toverflow= T-N= (1/f) -2~n=(1/32.768) - 2212=125ms | FF?Dh 2
002h g
001h
TBSSEL=01 ID=00 IDEX=000 000h -
3 . e

Toverfiow = At=T'N

Timer 12-Bit Timer

> Counter Mode
Cleae Toiul) Coned TBSSEL=01 (ACLK is active, 32.768kHz)
B P ID=00 (1% divider is 1)
TBCLR ‘(3?;};%‘ MC=10 IDEX=000 (2" divider is 1)
CNTL=01 (12-bit counter)
MC=10 (Continuous mode, count up to end)
TBIE=1 — TBIE= 1 (Timer overflow interrupt is enabled,

otherwise timer doesn’t create interruetz

TBxCLK

(32.768 kHz) ACLK
SMCLK

INCLK

- TBOR

Timer Overflow Tracking —TBIFG

Timer Overflows

Ex. An example of using the TBO timer to generate an interrupt every 262ms. In this example, TBO
will use SMCLK as its source and use the 1%t divider by 4 in continuous mode so that overflows

happen indefinitely. When a timer overflow occurs, an interrupt will be triggered. Assume SMCLK=
1MHz

Timer Output §
SMCLK= 1MHz and there is a division of the clock source by 4 FEEED |-~
FFFDh
Toverflow= T-N= (1/(f/4)) -2*n=(1/32.768) - 2A16= 262ms ; 2z
0002h
0001h
TBSSEL=10 ID=10 IDEX=000 0000h >
'f 2 Toverflow = At=T'N Time
TBXCLK Timer 16-Bit Timer o TBOR
ACLK Gk > Counter Mode
(1 MHz) SMCLK—{10 Clear Length Control
INCLK. | 1 50 it > > TBSSEL=10 (SMCLK is active, 1 MHz)
TBCLR CNTL=00 MC=10 ID=10 (1%t divider is 4)
IDEX=000 (2" divider is 1)
|_ CNTL=00 (16-bit counter)

Timer Overflow Tracking |—TBIFG MC=10 (Continuous mode, count up to end)
TBIE= 1 (Timer overflow interrupt is enabled,
otherwise timer doesn’t create interrupt

TBIE=1 —

Timer Compares

A timer compare will trigger an event when the main timer value equals a value stored in one of the MSP430’s
capture/compare registers (CCR). These registers are used for either the compare function or the capture
function, which is why they are always referred to as CCRs and not simply compare registers. When the values
match, the CCR will assert a flag (CCIFG = capture/compare flag) and can trigger an interrupt if enabled. Each
CCR has its own enable (CCIE = capture/compare interrupt enable) and is maskable with the GIE bit.

TBSSEL ID IDEX
2 2 3
TBxCLK + f Timer 16-Bit Timer 1B
.. , xR
(32.768 kHz) ACLK—{ ?gﬁ?af Q‘lgdgr Clock Counter Mode
(1 MHz) SMCLK: wetr) | | ety > Clear Length Control
INCLK: [2 2
TBCLR CNTL MC
When TBxR equals the value in the CCR, a
CCIFG is asserted and an interrupt can be
generated. — . 2
* When the timer isin “up” mode, CCROhasa |TBIE el el — TBIFG
special function that its value diclates the =
maximum value of the counter before it Capture/Compare Registers
The control reg‘:z:(::rsz;lll the CCRs is < “GIE :j = I_CCIFG
i i)
TBxCCTLn where “x" is the limer (TBO, TB1, CCIE -j CCR1 I_CC”:G
TB2 or TB3) and “n" is the capture/compare ?
register number (i.e., TBOCCTLO,TBOoCCTL1, |CCIE 'q CCR2 I_CCIFG
TBOCCTL2, TB1CCTLO, etc.). : i
Do not forget that we have CCIEi CCR6 }_CC|FG
only TBO 1§

Timer Compares

Each Timer_B CCR register is configured by its own Timer B Capture/Compare Control Register (TBxCCTLn).
The notation for this register is that “x” stands for the timer (TBO, x=0 in our examples) and the “n” stands for
the CCR number (TBxCCTLO, TBxCCTL1, TBxCCTL2, etc.). Figure shows the bit functionality of the TBxCCTLn

registe rs Timer_B Capture/Compare Control Register n (TBXxCCTLn)
p: 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| CM | CCis | SCS | CLLD ICAPI OUTMOD |CCIE| CCII 0UT|COVICCIFGI
Valweono o0 0 0 0 0 0O O O O O O 0 O O O
Reset:
Bit Field Description
Capture Mode
15:14/ CM 00=No Capture 10=Capture on Falling Edge
01=Capture on Rising Edge 11=Capture on Both Edges
Capture/Compare Input Select
13:12| CCIS 00=CCIxA 10=GND
01=CCIxB 11=VCC
11 |8SCS Synchronize Capture Source (0=Asynchronous Capture; 1=Synchronous Capture),
Compare Latch Load
00=TBXCLn Loads on Wite to TBXCCRn. Fig. Timer_B capture/compare control register (TBXCCTLn) details
109 | cLLo 01=TBxCLn Loads when TBxR Counts to 0.
. 10=TBxCLn Loads when TBxR Counts to 0 (up or continuous mode),
TBxCLn Loads when TBxR Counts to TBxCLO or 0 (up/down mode).
11=TBxCLn Loads when TBxR Counts to TBxCLn.
B8 |CAP Capture Mode (0=Compare Mode; 1=Capture Mode)
Output Mode
000=0UT hit value 100=Toggle
7:5 |OUTMOD 001=Set 101=Reset
010=Toggle/Reset 110=Toggle/Set
011=Set/Reset 111=Reset/Set
4 |CCIE Capture/Compare Interrupt Enable (0=IRQ Disabled; 1=IRQ Enabled).
3 |CcCl Capture/Compare Input.
2 |ouT Output Level (0=Low; 1=High).
1 |COV Capture Overflow (0=No overflow occurred; 1=Qverflow occurred).
0 |CCIFG Capture/Compare Interrupt Flag (0=No IRQ Pending; 1=IRQ Pending).

Timer Compares

Ex. An example of using a timer compare to generate an event every 0.5s. We will use ACLK as the timer
source without any division. We need to put the timer into “UP” mode to enable the compare functionality for
CCRO. We then need to load CCRO with the compare value that we want to use as the maximum value of the

timer before it overflows and starts counting at 0.

Timer Output

ACLK= 32.768 kHz and there is no division
At=T-N=(1/32.768))-N=(1/32.768)- N=500ms ->N=16.384

(n must be 16. Because 12-bit counter isn’t enough) C— Time
Re b}
TBSSEL=01 1D=00 IDEX=000

16-Bit Timer TBOR

TBxCLK
(32.768 kHz) ACLK Counter Mode
SMCLK: Clear Length Control
INCLK }2 2

TBCLR CNTL=00 MC=01

(UP)
Timer Overflow Tracking
TBIE=0 (not usng) —TBIFG
The configuration for TBOCCRQ is { CCIE=1 TBOCCRO=16.384 _CCIFG
done using the TBOCCTLO register

Timer Overflow Examples

Ex. Write a C language program that toggles the LED on P4.7 in every 2s.
#tinclude <msp430.h>

#define LED P4OUT
int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer 11 If the other settings for timer are not done, their

PADIR=0OxFF; //P4 is output
P40UT=0x00; //Clear P4
//-- Setting up timer
TBOCTL |=TBCLR; //Clear timer and dividers ID=00 (1st divider is 1)
TBOCTL|=TBSSEL__ACLK; //Source=ACLK o
TBOCTL |=MC__CONTINUOUS; //Mode= Continuous IDEX=000 (2" divideris 1)

default values are used. These are:

//-- Setting up timer Overflow IRQ (Interrupt Request) CNTL=00 (16-bit counter)
TBOCTL |=TBIE; //Enable TBo Overflow IRQ TBIFG flag must be cleared before enabling interrupt
TBOCTL &=~TBIFG; //Clear TBO flag

//-- Main loop
while(1) // Loop forever
{}

return 0;

}
#pragma vector = TIMERO_B1_VECTOR // TIMERO_B1_VECTOR is the vector for TBOIFG

__interrupt void ISR_TBO_Overflow(void) // This function is called in every 2s
{
LED"=BIT7; // Toggle the LED on P4.7
TBOCTL &=~TBIFG; //Clear TBO flag, it is required. Otherwise, next interrupt call will not be realized, program stops after 15t run

}

Timer Overflow Examples

Ex. Write the same program that speeds up the toggling by 16 times, which means toggling in every 125ms.
#tinclude <msp430.h>

#define LED P4OUT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer Il If the other settings for timer are not done, their

PADIR=0OxFF; //P4 is output
P40UT=0x00; //Clear P4
//-- Setting up timer
TBOCTL |=TBCLR; // Clear timer and dividers ID=00 (1st divider is 1)

TBOCTL|=TBSSEL__ACLK; // Source=ACLK e .
TBOCTL |=MC__CONTINUOUS; // Mode= Continuous IDEX=000 (2" divideris 1)

default values are used. These are

TBOCTL|=CNTL_1; // Length=12-bit

//-- Setting up timer Overflow IRQ (Interrupt Request)
TBOCTL|=TBIE; //Enable TB@ Overflow IRQ
TBOCTL &=~TBIFG; //Clear TBO flag

__enable_interrupt(); //Enable maskable IRQs
//-- Main loop
while(1) // Loop forever

{}

return 0;

}
#pragma vector = TIMERO_B1_VECTOR // TIMERO_B1_VECTOR is the vector for TBOIFG

__interrupt void ISR_TBO_Overflow(void) // This function is called in every 125ms
{

LED"=BIT7; // Toggle the LED on P4.7

TBOCTL &=~TBIFG; //Clear TBO flag

}

Timer Overflow Examples

#include <msp430.h>

#tdefine LED P40UT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
P4DIR=OxFF; //P4 is output

P40UT=0x00; //Clear P4

//-- Setting up timer

TBOCTL|=TBCLR; //Clear timer and dividers
TBOCTL|=TBSSEL_1; //Source=01=ACLK, From Figure 1
TBOCTL|=MC_2; //Mode=10=Continuous, From Figure 1
TBOCTL|=CNTL__12; //Length=12-bit

//-- Setting up timer Overflow IRQ (Interrupt Request)
TBOCTL |=TBIE; //Enable TB@ Overflow IRQ

TBOCTL &=~TBIFG; //Clear TBO flag
__enable_interrupt(); //Enable maskable IRQs

//-- Main loop
while(1) //Loop forever

{}

return 0;

}

#tpragma vector = TIMERO_B1_VECTOR //TIMERO_B1_VECTOR is the vector for TBOIFG

__interrupt void ISR_TBO_Overflow(void)

{
LED~=BIT7; //Toggle the LED on P4.7

TBOCTL &=~TBIFG; //Clear TBO flag
}

If it is sometimes hard to remember the
codes, use the words assigned to them.

*If you want to use words instead of codes,
use double underscore, whichis “__”

*If you want to use codes instead of words,
use single underscore, which is“_”

Choose the more catchy one for yourself

Timer Overflow Examples

Ex. Design and write a C program that toggles the LED connected on P4.7 in every 1s. Use SMCLK (1MHz) as a
clock source.

Maximum value of ID is 8 and if we use 8 for ID, let’s what happens...
» Toverflow=(1/(f/8)):N = (1/(1MHz/8))- 2216 = 524ms. (we can’t obtain 1s delay with maximum ID)

Therefore we must employ the second divider IDEX and set it to be 2 as the divider value.
» Toverflow=(1/(f/(8*2)))-N = (1/(1MHz/16))-2216 = 1048ms = 1s.

TBSSEL=10 ID=11 IDEX=001 Timer A Toverow = A=T-N
; ’ 16-Bit Ti Outputie >

TBXCLK—© | | Timer it Timer e TBOR FFFFh

ACLK—1o1 Divider| [Divider Clot T FEFER
(1 MHz) SMCLK—{1 8 /2 Clear _Length Control -
INCLK—{11 [l 62.5kHz }2 9 -

TBCLR CNTL=00 MC=10 8%¥ﬂ

0000h

L -
TBIE=1— Timer Overflow Tracking —TBIFG

Timer Overflow Examples

#include <msp430.h>

#define LED P4OUT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD;// stop watchdog timer) .

PADIR=OXFF;// P4 is output TBSSEL=10 (SMCLK is active, 1 MHz)
P40UT=0x00; // Clear P4 ID=10 (1%t divideris 8)

//-- setting up timer . IDEX=001 (2" divider is 2)

TBOCTL|=TBCLR; // Clear timer and dividers _ .

TBOCTL | =TBSSEL__SMCLK; //Source=SMCLK CNTL=00 (16-bit counter)
TBOCTL|=MC__CONTINUOUS; // Mode=Continuos MC=10 (Continuous mode, count up to end)

TBOCTL|=ID_8; //Divide SMCLK by 8 o TBIE= 1 (Timer overflow interrupt is enabled,
TBOEXQ|=TBIDEX__2; //Divide SMCLK by 2, total divider is 16 o ,
//-- Setting up timer Overflow IRQ (Interrupt Request) otherwise timer doesn’t create output)
TBOCTL|=TBIE; //Enable TB@ Overflow IRQ
TBOCTL &=~TBIFG; //Clear TBO flag
__enable_interrupt(); //Enable maskable IRQs
//-- Main loop
while(1) // Loop forever
{}

return 0;
}
#tpragma vector = TIMERO_B1_VECTOR // TIMERO_B1_VECTOR is the vector for TBOIFG
__interrupt void ISR_TBO_Overflow(void)
{

LED”=BIT7; // Toggle the LED on P4.7

TBOCTL &=~TBIFG; //Clear TBO flag

}

Timer Compare Examples

Ex. Design and write a C program that toggles the LED connected on P4.7 in every 500ms.
ACLK= 32,768 kHz and there is no division Timer Output
At=T-N=(1/32.768))-N=(1/32.768)- N= 500ms >N=16.384

(n must be 16. Because 12-bit counter isn’t enough)

() Time

TBSSEL=01 ID=00 IDEX=000

TBXCLK 16-Bit Timer TBOR
(32.768 kHz) ACLK > Counter Mode
Sll\'cg& Clear Length Control

KHz }2 }2
TBCLR CNTL=00 MC=01

(UP)
Timer Overflow Tracking
TBIE=0 (not using) —TBIFG
The configuration for TBOCCRQ is { CCIE=1 TBOCCRO=16.384 __CCIFG
done using the TBOCCTLO register

Timer Compare Examples

#include <msp430.h>

#define LED P40OUT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD;// stop watchdog timer . .

PADIR=OXFF;// P4 is outpl’,t TBSSEL=01 (ACLK is active, 32,768kHz)

P40UT=0x@0; // Clear P4 MC=01 (Up mode, count up to end)

//-- Setting up timer , - CCIE= 1 (Capture/compare interrupt is enabled, otherwise timer
TBOCTL |=TBCLR; //Clear timer and dividers ,

TBOCTL | =TBSSEL__ACLK; //Source=ACLK doesn’t create output)

TBOCTL |=MC__UP; //Mode= Up, for compare, MC must be UP

TBOCCRO=16384; //Capture Compare Register is loaded with 16384 to create an interrupt
//-- Setting up timer Compare IRQ (Interrupt Request)

TBOCCTLO|=CCIE; //Enable TB@ CCRO Compare IRQ

TBOCCTLO &=~CCIFG; //Clear CCRO flag

__enable_interrupt(); //Enable maskable IRQs

//-- Main loop
while(1) // Loop forever
{}

return 0;
}
#pragma vector = TIMERO_BO_VECTOR // TIMERO_BO_VECTOR is the vector for CCIFGO
__interrupt void ISR_TBO_CCRO(void)
{

LED~=BIT7; //Toggle the LED on P4.7

TBOCCTLO &=~CCIFG; //Clear CCRO flag

}

