Variables in C

Variables change during runtime so are required to be stored in RAM..
Integers can be defined according to their length and sign as given below...
unsigned char MyVar; //8-bit unsigned integer (©,... 255)
char MyVar; //8-bit signed integer (-128,..127)
signed char MyVar; //8-bit signed integer (-128,..127)
unsigned int MyVar; //16-bit unsigned integer (0,..65535)
int MyVar; //16-bit signed integer(-32768,....32767)
signed int MyVar; //16-bit signed integer(-32768,..... 32767)
unsigned long (int) MyVar; //32-bit unsigned integer (0,...4294967295)
long (int) MyVar; //32-bit signed integer (-21474836476,.. 21474836475)
signed long (int) MyVar; //32-bit signed integer(-21474836476,.21474836475)




Variables in C
unsigned long long MyVar; //64-bit unsigned integer

long long MyVar; //64-bit signhed integer
signed long long MyVar; //64-bit signed integer

When we need to use the variables with a floating part. We can use...
float MyVar; //32-bit floating point

double MyVar; //64-bit floating point
long double MyVar; //64-bit floating point

bool MyVar; //8-bit boolean type variable, which means logical @ or 1
//requires to add #include <stdbool.h>



Viariables in C

Static and Volatile variables are different.

A static variable is simply a variable that exists for the lifetime of the application. Static
variables can be global: defined outside of a function and accessible everywhere, or
local: defined within a function and only accessible from within that function.

Local static variables are created on the first invocation of the function and remain in
memory for the function to use when next called.

The static keyword enforces the compiler to ensure that the RAM for the variable is
always reserved and not reused for other variables.

So if you need a variable that is only used within a function and only updated by that
function and you need the value of that variable to remain for the next time that you
call the function then you need to define it as a static variable.

static int Myvar = 0;




Variables in C

A volatile variable is one the can be changed without the compilers knowledge
for example by an interrupt. This means that whenever this variable is accessed
by the program it must be reread from the actual memory location in case it has

changed, rather than simply read from the cache or registers on the ALU if it has
already been used recently by the program.

volatile int MyVar = 0;
A variable can be both static (always present) and volatile (changed from anywhere).

static volatile int MyVar = 0;




Bitwise Logic operators in C
Operator | Deseription —____|example

~ Complement the variable bit-by-bit MyVar =~ MyVar; //complements all bits

| OR the variable bit-by-bit MyVar = MyVar | 0b@@eoeeol; //Set the last bit
& AND the variable bit-by-bit MyVar =MyVar & 0b11111110; //Clear the last bit
A XOR the variable bit-by-bit MyVar =MyVar”~0bl10000000; //Toggle the first bit

<< Rotate left the variable n times arithmetically MyVar = MyVar<<4; //Rotate left 4 times
>> Rotate right the variable n times arithmetically MyVar = MyVar>>3; //Rotate right 3 times

The table given above summarizes all the Bitwise Logic Operators in C




Bitwise Logic Operators in C

Ex: Run the following program and observe the changings in e and f variables.

#include <msp430.h>

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
int e= 0b1111111111110000;

int f= 0x0001;

while(1)

{
e=~e; //Complement all the bits in e, €=0000 0000 0000 1111
e=e|BIT7; //Set bit 7 by using OR with ©bl10000000, €=0000 0000 1000 1111

e=e&~BITO; //Clear bit © by using AND with ©6b111111190, €=0000 0000 1000 1110
e=e”BIT4; //Toggle bit 4 by using XOR with ©0b00010000, e=0000 0000 1001 1110

e|=BIT6; //Set bit 6 by using OR with ©b01000000, €=0000 0000 1101 1110
e&=~BIT1l; //Clear bit 1 by using AND with ©b11111101, e=0000 0000 1101 1100
e~=BIT3; //Toggle Bit 3 by using XOR with ©b00001000, e=0000 0000 1101 0100

f=f<<1l; //Rotate f left 1 time arithmetically, f=0x0002, f=0b0010

f=f<<2; //Rotate f left 2 times arithmetically, f=0x0008, f=0b1000

f=f>>1; //Rotate f right 1 time arithmetically, f=0x0004, f=0b0100
}

return O;



Conditional Statements (If)

if(condition) // condition to satisfy

{

. // codes

. // to

. // execute
}

If the condition inside the parentheses is satisfied, the codes between { } are executed.
Otherwise, program flow continues.




Conditional Statements (If)

Ex. Write a C program that turns the LED on, which is connected to P4.7 when button on P2.1 is pressed.

#include <msp430.h>

#define BUTTON P2IN

#define LED P40OUT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer

P2DIR=0x00; //P2 is input

PADIR=OXFF; //P4 is output

P40UT=0x00; //Clear P4

while(1) //Always check!, otherwise it checks once and ends the program

{
if (BUTTON==0xFD) //Means “If button is pressed

{
LED |= BIT7; //LED is ON
}
}
return 0;

L




Conditional Statements (If)

#include <msp430.h>
* In the previous example, even if #define BUTTON P2IN
the button is released (after #define LED P4OUT

pressing) program does nothing or
do not know how to handle and
the LED keeps ON. It is also
possible to handle if the condition
is not satisfied.

* Examine the example given

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
P2DIR=0x00; //P2 is input

PADIR=0OxFF; //P4 is output

nearby! P40UT=0x00; //Clear P4
* In the examp|e’ if button is while(1)// Always check!, otherwise it checks once and ends the program
pressed LED is ON, if not pressed {
LED is OFF if (BUTTON==OXxFD) //1f button is pressed

{

LED |= BIT7; //LED is ON
}
LED &=~BIT7; //LED is OFF if button is not pressed
}
return 0;

}



Conditional Statements (If)

Since the total lines of code for
if statement is only one. It is
not necessary to wuse ({}
symbols.
Check the
without {}

same example

#include <msp430.h>

#define BUTTON P2IN

#define LED P40UT

int main(void)

{

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
P2DIR=0x00; //P2 is input

PADIR=OxFF; //P4 is output

P40UT=0x00; //Clear P4

while(l) //Always check!, otherwise it checks once and ends the program

{
if (BUTTON==0xFD) //If button is pressed

LED |= BIT7; //Condition is satisfied, LED is ON
LED &=~BIT7; //Condition is NOT satisfied, LED is OFF

}

return 0;

}




Conditional Statements (If-else)

if(condition) //condition to satisfy * In if-else statement, if the
{ condition is not satisfied, program
flowing continues with the block
. // codes of codes in else statement.
. // to
. // execute
}
else //if the condition is not satisfied
{
. // codes
. // to
. // execute
}



Conditional Statements (If-else)

#include <msp430.h>

#define BUTTON P2IN " . .
#define LED2 PAOUT In. .|f-e_lse state.m.ent, if the
#define LED1 P10UT condition is not satisfied, program
int main(void) flowing continues with the block
{ of codes in else statement.

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
P2DIR=0x00; PADIR=0OxFF; P40UT=0x00; P1DIR=0OxFF; P10UT=0x00;
while(1) //Always check!, otherwise it checks once and ends the program

{
if (BUTTON==0xFD) //If button on P2.1 is pressed
{
LED1 |= BIT@; //LED on P1.0 is ON
LED2 &=~BIT7; //LED on P4.7 is OFF
} * If the number of lines of code to
) execute is more than 1 line and
else //If button on P2.1 is NOT pressed .. ) . e
{ the condition is not satisfied,
LED2 |= BIT7; //LED on P4.7 is ON else statement can really be
LED1 &=~BIT@; //LED on P1.0 is OFF useful.
}
}
return 0;
¥



Conditional Statements (If-else if- else)

if(condition 1) //condition to satisfy

{
. // codes
. // to e |Inif - else if - else statement,
) - // execute if the conditionl is not satisfied,
else if (condition 2) //if the cond. 1 is not but cond.2 is satisfied program flow continues with the next
{ condition (else if) checking and
: % ;Odes continues in this way until a condition is
. (0] . re e
/7 execute satlsflgd. .Code block o.f .SatISerd
} condition is executed. (Just like in C++)
else if (condition 3) //if cond. 1 and cond.2 are not but cond.3 is satisfied e |f none of the condition is satisfied,
{ . .
1/ codes code block belonging to else s
. // to executed.
. // execute * Only one condition can be satisfied at

b the same time.
| e Conditions MUST NOT overlap!

else //If none of the conditions are not satisfied

{
. // codes

. // to
. // execute

—




Conditional Statements (If-else if- else)

#tinclude <msp430.h>

Ex: Write a C language program  #define BUTTON1  P2IN
#tdefine BUTTON2  P1IN

that.. #define LED2 PAOUT
e Turns ON both LEDs when  #define LED1 P10UT
int main(void)
both buttons are pressed {
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
* Turns OFF both LEDs wWhen no  p)n1poox00; paDIR-exFF; PAOUT=6x@0; PIDIR=OXFD; P1OUT=@x@0;
both buttons are pressed' while(1) //Always check!, otherwise it checks once and ends the program
. . {
e If first button is pressed and if (BUTTON1==@xFD & BUTTON2==@) //If both buttons are pressed
: {
second one is not, turns the LEDL |= BITO; //LED on PL.@ is ON
first LED ON and the second LED2 |= BIT7; //LED on P4.7 is ON
¥
OFF. else if (BUTTON1==OxFD && BUTTON2==2) //If BTN1 is pressed, BTN2 is not pressed
i {
. |f second !autton is pressed a.nd LEDL |- BITe; //LED on P1.0 is ON
first one is not, turns the first LED2 &=~BIT7; //LED on P4.7 is OFF
}
LED OFF and the second ON. else if (BUTTON1==0xFF && BUTTON2==@) //If BTN2 is pressed, BTN1 is not pressed
e Default values on P2IN is FFH { .
. LED1 &=~BITO; //LED on P1.0 is OFF
and P1IN is 02H. LED2 |= BIT7; //LED on P4.7 is ON
}
° When the bUtton on P2 and else //If none is pressed
button on P1 are pressed, they { -
. LED1 &=~BITO; //LED on P1.0 is OFF
create a logic 0 LED2 &=~BIT7; //LED on P4.7 is OFF
}
}
return 0;

}




Conditional Statements (while)

while(condition) //condition to satisfy

{

. // codes

. // to

. // execute
}

While condition inside the parentheses is satisfied, the codes between { } are executed.
Otherwise, program flow continues.




Conditional Statements (while)

Ex. Write a C program that turns the LED ON, which is connected to P4.7 while the button on P2.1 is
not pressed.

#include <msp430.h> e Like in if statement, if the number
#define BUTTON P2IN of codes to execute is nomore than

ftdefin? LED. P40OUT 1 line, we do not have to use {}.
?nt main(void) e Therefore, we can delete {} for the

) inner while loop in the example
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer

P2DIR=0x00; //P2 is input

PADIR=OXFF; //P4 is output

P40UT=0x00; //Clear P4

while(1) //Always check!, otherwise it checks once and ends the program

{
while (BUTTON!=0xFD) //means “While button is not pressed”, it is connected to P2.1
{
LED |= BIT7; //LED is ON
}
LED &=~BIT7; //LED is OFF
}
return 0;
}



Conditional Statements (do while)

do

{ // codes

. // to

. // execute

}

while(condition); // condition to satisfy

In case we need to execute the code once at least or check the condition to satisfy after
the execution of the code. We can employ do-while loop.




Conditional Statements (do while)

Ex: Write the C program that toggles the LEDs on P1.0 and P4.7 alternatively with some delay.
#include<msp430.h>

void Delay_Func(void);

void Delay_Func(void)

{

volatile unsigned long i;

i=50000;

do i--;

while(i != 9);

¥

int main(void) {

WDTCTL = WDTPW | WDTHOLD; //Stop watchdog timer
P4DIR = Ox80; //Set P4.7 is output
P1DIR = Ox01; //Set P1.0 is output
while(1)

{

P4OUT = Ox00; //P4.7 is OFF

P10OUT = Ox01; //P1.0 is ON

Delay Func();

P40UT = 0x80; //P4.7 is ON

P10UT = 0x00; //P1.0 is OFF

Delay Func();

}
}



Conditional Statements (for)

for (initialization; condition; iteration) //condition to satisfy

{

. // codes

. // to

. // execute
}

In for loop, after each iteration, condition is checked if it is satisfied or not. As long
as it is satisfied, codes inside {} are executed. Otherwise, program flow continues
from the end point of the for loop.

Unlike C++, declaration of the variable in for loop must be done before the loop.



Conditional Statements (for)

Ex. Write a C program that blinks the LED, which is connected to P4.7 for four times when button on P2.1 is pressed.
#include <msp430.h>

#define BUTTON  P2IN

#define LED P4OUT

void MyDelay(void); . for loop is t.errmnated when
void MyDelay(void) //Delay Function j=8. Because it is expected to
{ , , o blink the LED four times
volatile unsigned long int i; L .
for(i=l; i<50000; i++); * Even if it is possible to declare
} a variable in for loop in C++, it
E"t main(void) is not possible in C!

WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer

P2DIR=0x00; //P2 is input

PADIR=OXFF; //P4 is output

P40UT=0x00; //Clear P4

while(1) //Always check!, otherwise it checks once and ends the program

{
char j;
if (BUTTON==0xFD) //means “If button is pressed”
{
for (j=0; j<8; j++)
{
LED ~= BIT7;
MyDelay();
}
}
}
return 0;



Conditional Statements (switch)

switch(choice)

{
case 1: //do something //

break;
case 2: //do something else //

break;

default: //for all other values //
break;

¥

In switch loop, choice is received as a parameter and the corresponding case is executed.
Program execution continues until it sees break. If no case is selected, default case is executed.



Conditional Statements (switch)

#include <msp430.h>
#define BUTTON1 P2IN

* Same example of else
if with a switch way

. switch(m)
##tdefine BUTTON2 P1IN {
#define LED2 P4OUT case 1:
#define LED1 P10OUT LED1 &=~BIT@; //LED on P1.@ is OFF
int main(void) LED2 |= BIT7; //LED on P4.7 is ON
{ break;
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer
P2DIR=0x00; PADIR=0OxFF; P40UT=0x00; P1DIR=0XxFD; P10OUT=0x00; case 2:

LED1 |= BITO®; //LED on P1.0 is ON
char m; LED2 &=~BIT7; //LED on P4.7 is OFF
while(1) //Always check!, otherwise it checks once and ends the program break;

{
if (BUTTON1==0xFD &% BUTTON2==0) //If both buttons are case 3: ,
pressed LED1 |= BITO; //LED on P1.0 }S ON
m=3; LED2 |= BIT7; //LED on P4.7 is ON
else if (BUTTON1==OxFD & BUTTON2==2) //If BTN1 is ZZEZEit:
pressed, BTN2 not pressed LED1 &=~BIT@; //LED on P1.@ is OFF
m=2; LED2 &=~BIT7; //LED on P4.7 is OFF
else if (BUTTON1==0xFF & BUTTON2==0) //If BTN2 is }
pressed, BTN1l not pressed
m=1; }
else //If none is pressed return 0;
m=0; }



Conditional Statements (switch)

#include <msp430.h>

#define BUTTON1 P2IN

#define BUTTON2 P1IN

#define LED2 P40UT

#define LED1 P10OUT

void MyDelay(void);

void MyDelay(void) //Delay Function

{
volatile unsigned long int i;
for(i=1; i<50000; i++);
}
int main(void)

{
WDTCTL = WDTPW | WDTHOLD; //stop watchdog timer

P2DIR=0x00; PADIR=0OxFF; P40UT=0x00; P1DIR=0xFD; P10UT=0x00;

char m;
while(1) //Always check!
{
if (BUTTON1==0xFD && BUTTON2==0) //If both buttons are pressed
m=3;
else if (BUTTON1==0OxFD && BUTTON2==2) //If BTN1 is pressed, BTN2 not pressed
m=2;
else if (BUTTON1==OxFF && BUTTON2==@) //1f BTN2 is pressed, BTN1 not pressed
m=1;
else //If none is pressed
m=0;

* Let’s remove breaks
and see what happens

switch(m)
{
case 1:
LED1 &=~BITO;
LED2 |= BIT7;
MyDelay();

case 2:
LED1 |= BITO;
LED2 &=~BIT7;
MyDelay();

case 3:
LED1 |= BITO;
LED2 |= BIT7;
MyDelay();

default:
LED1 &=~BITO;
LED2 &=~BIT7;
MyDelay();

}
}

return O;

}

//LED
//LED

//LED
//LED

//LED
//LED

//LED
//LED

on
on

on
on

on
on

on
on

P1.
P4.

P1.
P4.

P1.
P4.

P1.
P4,

OFF
ON

ON
OFF

ON
ON

OFF
OFF



