
EEE 204

Introduction to Interrupts
Asst. Prof. Dr Mahmut AYKAÇ

2

Introduction to Interrupts
• An interrupt is an approach to dealing with external, asynchronous events by
building hardware into the MCU that handles identifying and prioritizing events to be
serviced by the CPU.

• The interrupt system uses the concept of a flag to notify the CPU that an external
event on a peripheral has occurred and action is requested.

• This approach allows the CPU to continue its normal instruction execution and only
act when a flag is seen.

• When a flag is observed, the CPU completes its current instruction and then
executes a sequence of instructions (written by the programmers) that
accomplishes the desired action for the peripheral.

• The code that is executed when an interrupt occurs is called an Interrupt Service
Routine (ISR) or interrupt handler.

3

Interrupt Priority and Enabling
• Interrupts have a priority system that ranks each external peripheral from highest to
lowest. This provides a means to handle multiple interrupts that occur at the same time
and are simultaneously requesting service from the CPU.

•An MCU has three categories of interrupts (sorting from highest to lowest)
 System Resets; They are the most critical because they cause the MCU to start its operation from the

beginning. This includes putting all configuration registers at their default values, initializing the program
counter, and entering the main program at its first instruction.
 Non-maskable Interrupts (NMIs); They are the second highest priority interrupts and typically handle

fault conditions on the MCU. Examples of non-maskable interrupts are memory access errors and
oscillator faults. When maskable interrupt occur, it can be handled after executing the current instruction.
 Maskable Interrupts (MIs). They are the third category of interrupts and are the interrupts that handle

all of the common peripherals on an MCU (i.e., ports, timers, serial communication, ADC, and DACs).
Maskable interrupts have both global and local interrupt enables. The GIE bit in the status register is
used as the global enable for all maskable interrupts. When it is set (GIE = 1), then maskable interrupts
are allowed. Upon reset GIE = 0, meaning no maskable interrupts are enabled. When non-maskable
interrupts occur, the current instructions and status are stored in stack for the CPU to handle the
interrupt.

4

Interrupt Priority and Enabling
Each peripheral system then has a local interrupt enable (IE) that is configured in the

control/status registers within the memory map. The global and local interrupt enable bits can be
thought of as gating switches that allow the peripheral’s flag to be observed by the CPU when
configured.

Fig. Conceptual model for global and local interrupt enables

Simply, If Global Interrupt (GIE) is
Enable, Local Interrupt (IE) is Enable and
Local Interrupt Flag (IFG) is Logic 1,
Interrupt Service Routine is invoked.

While Global Interrupt Enable and Local
Interrupt Enable are set manually in the
program, Local Interrupt Flag becomes
logic 1 if the correspondent event is
realized. These events can be timer
overflow/compare, port interrupts or any
of them given in the Interrupt Source
column given in the figure.

5

Interrupt Vectors
The beginning of an ISR is marked with an address label in the main.asm file. This

address label serves as the starting address to be put into the PC when the ISR is
called. The way that the CPU retrieves the starting address of the ISR to put into the
program counter uses the concept of an interrupt vector.

Each peripheral system that is capable of generating an interrupt is assigned a
dedicated address location at the end of the program memory space. The address is
called the peripheral’s interrupt vector address and will hold the starting address of
the ISR.
Since there are numerous peripherals that each require a unique vector, the

addresses consume a block of memory called the interrupt vector table.
The starting address of the ISR is put into the interrupt vector table when the

program is downloaded.
Interrupt Service Routine (ISR) is a function that hardware invokes in response to
an interrupt.

6

Interrupt Vectors

Fig. Interrupt vector table concept

The full MSP430 architecture
supports up to 64 separate
interrupt vectors whose addresses
are located within the range
FF80HFFFEH

7

Interrupt Vectors
Figure shows a graphical depiction of how the interrupt vector table is initialized using the starting addresses of

ISRs and assembler directives. In this figure, three interrupt vectors are initialized: reset, vector 22, and vector
25. Vectors 22 and 25 represent maskable interrupts that have ISRs that are executed when serviced. The
starting addresses of these routines (named ISR1 and ISR2) are placed into their respective vector locations
using the assembler directives .section and .short.

Fig. A graphical depiction of initializing the interrupt vector table

vector 63 handles the highest
priority interrupt in the MCU,
which is reset. This vector holds
the starting address of where to
begin executing code when the
MCU is reset or powered up.

8

Interrupt Service Routines
An interrupt service routine is written in a similar manner as a subroutine. They both need

to start with an address label and contain instructions to be executed when called; however,
an ISR must end with a dedicated instruction called return from interrupt (reti). The
reti instruction will pop the SR and PC off of the stack in order to return the CPU execution
back to the main program.

Another critical role of a maskable ISR is that it must clear the peripheral’s local interrupt
flag (IFG) that caused the interrupt in the first place. If the IFG is not cleared, then as soon
as the ISR completes and the CPU returns to the main program, it will be immediately
interrupted again because the flag is still asserted. This leads to an infinite ISR loop
that the CPU can never get out of.
ISRs should be short, fast, and dedicated to only performing the functionality needed by the

peripheral at that time. A good ISR should impact the rest of the MCU as little as possible.

9

Interrupt Servicing Summary
Figure shows a flow chart of the steps that are taken when an IRQ (Interrupt Request) is serviced. Note that

some of the steps are taken automatically by the CPU while some are up to the developer.

Fig. Sequence of tasks performed when servicing an interrupt

When using maskable interrupts, it is important to keep in
mind which tasks are taken care of automatically by the MCU
and those that the developer must do. When using a specific
peripheral with a maskable interrupt, the developer has the
following responsibilities:
1. Configure the peripheral for the desired functionality.
2. Clear the peripheral’s interrupt flag (IFG).
3. Assert the local interrupt enable (IE) for the peripheral.
4. Assert the global interrupt enable (GIE) in the status register.
5. Write the ISR with an address label to mark its starting
location and the reti instruction to denote its end.
Remember that the ISR must clear the peripherals local
interrupt flag (IFG) so that when the ISR completes, the
peripheral doesn’t inadvertently trigger another IRQ.
6. Initialize the vector address for the peripheral using the ISR
address label and assembler directives.

10

Interrupt Servicing Summary

Fig. MSP430F5529 interrupt vector table (for assembly)

System Reset

Non-maskable Interrupts

Maskable Interrupts

Port
Interrupts

11

MSP430F5529 Port Interrupts
The port interrupt system provides a prioritization scheme that can speed up determining

which bit of the port should be serviced first if multiple IRQs occur on a port simultaneously.
The port interrupt system prioritizes bit 0 as the highest priority and bit 7 as the lowest
priority within the port. Dedicated registers called the Port Px Interrupt Vector Word (PxIV, or
P1IV and P2IV) registers are used to indicate priority when simultaneous port IRQs have
occurred.

PxIV is loaded with a unique number corresponding to the bit that has just triggered an IRQ
and also has the highest priority of any bits within the port that may have also triggered an
IRQ. This number can be used within the service routine to quickly jump to the code
associated with the highest priority bit. PxIV does not have a bitwise correspondence to the
port bit that caused the interrupt. The values it takes on represent which of the 8 inputs is
pending with the highest priority. The values it will take on are: bit0 = 02h, bit1 = 04h, bit2 =
06h, bit3 = 08h, bit4 = 0Ah, bit5 = 0Ch, bit6 = 0Ch, and bit7 = 10h.

12

MSP430F5529 Port Interrupts
Each bit within ports 1 and 2 on the MSP430F5529 has the ability to trigger an interrupt when

configured as an input and there is a transition on its pin. Ports 1 and 2 each have their own dedicated
vector address; however, each bit within each port all share the port’s vector. So, it is the job of the
developer to determine which bit triggered the interrupt manually and which part of the associated ISR
to execute to service that bit.

The local enable for the port interrupts are configured in the Port Px Interrupt Enable (PxIE, or P1IE,
and P2IE) registers. Each bit within PxIE corresponds to the bit of the port (i.e., bit 0 of P1IE enables
the interrupt on bit 0 of P1). A 0 in PxIE indicates that the interrupt for that bit of the port is
disabled. A 1 in PxIE indicates that the interrupt for that bit of the port is enabled. PxIE is
cleared on reset, disabling the port interrupts. Since the port interrupts are maskable, the global
interrupt for all bits is the GIE bit in the status register.

The flags for the port interrupts are held in the Port Px Interrupt Flag (PxIFG, or P1IFG and P2IFG)
registers. Upon reset, all bits in PxIFG are set to 0. Upon an interrupt, the flag is asserted. Each bit
within PxIFG corresponds to the bit of the port (i.e., if bit 0 of P1IFG is asserted it means an interrupt
has occurred on bit 0 of P1). Once a port IRQ is serviced, the bit’s flag needs to be cleared in
PxIFG by the developer.

13

MSP430F5529 Port Interrupts
The last configuration setting for port interrupts is the ability to select which

transition polarity triggers the interrupt (i.e., rising or falling). The Port Px Interrupt
Edge Select (PxIES or P1IES and P2IES) registers. A 0 in this register means the
IRQ will be triggered on a low-to-high transition on the pin. A 1 in this register
means the IRQ will be triggered on a high-to-low transition. Each bit within this
register corresponds to the bit in the port it configures (i.e., if bit 0 of P1IES is a 1,
then a high-to-low transition on bit 0 of P1 will trigger an IRQ).

14

MSP430F5529 Port Interrupts
Figure gives a summary of the port interrupt configuration registers.

Fig. Summary of port interrupt configuration registers

15

MSP430F5529 Port Interrupts
When using port interrupts, there is a recommended initialization sequence to avoid

inadvertent bit assertions of flags due to the nature of power on. The recommended
sequence from the MSP430F5529 data sheet to configure a port interrupt is as follows:

1. Initialize the port direction (PxDIR), pull-up/down resistor (PxREN), the pull-
up/down resistor polarity (PxOUT), and the port interrupt edge select (PxIES).
2. Clear the port interrupt flags (PxIFG) for first use. Note that the reset value for
PxIFG=00h, but often bits will be asserted inadvertently due to step 1.
3. Assert the local port interrupt enable (PxIE).
4. Assert the global enable for maskable interrupts (GIE bit in SR).

16

MSP430F5529 Port Interrupts, Example:
Let’s now look at configuring the push-button switch S1 on the LaunchPad board to trigger a port

interrupt. Let’s design a program that will toggle LED1 each time S1 is pressed using an interrupt.
First, let’s look at the signal behavior of S1 when pressed. Figure shows a graphical depiction of the
logic levels and transitions that occur when S1 is pressed and released.

Fig. Signal behaviour of P2.1 when S1 is pressed
and released

P2.1

A few things to keep in mind when setting up a push-button interrupt:
• S1 is connected to Port2, bit 1. While the logic level of S1 can be observed on P2.1, when using an
interrupt, we don’t have to look at this bit. We instead allow a transition to assert an interrupt flag and
have the CPU execute an ISR accordingly.
• S1 is a switch that is connected to Vcc. This means we don’t need a pull-up resistor on the MCU to
provide the logic HIGH state when S1 is not pressed. If we want the IRQ to trigger immediately upon a
button press, then we need to configure the interrupt edge sensitivity (P2IES.1) to be high-to-low. When
S1 is not pressed, P2.1 is at a logic high. When the button is pressed, P2.1 goes to a logic low. If we leave
the P2IES.1 sensitivity at its default value of low-to-high sensitivity, the interrupt will only trigger once S1
is released.
• Since we are only using one bit within P2 to trigger an IRQ, we don’t need to use the P2IV register to
determine the highest priority bit that caused the IRQ. We will simply use the P2IFG register knowing that
we only care about bit1.
• The port 2 interrupt vector address is FFD4h. This has a CCS section name of .int42. This is the name we
will use when we initialize the vector address using assembler directives.
• In the ISR, we will need to toggle LED1, clear the P2IFG.1 flag, and use reti to return from the
interrupt.

17

MSP430F5529 Port Interrupts, example
init:
bis.b #BIT0, &P1DIR
bic.b #BIT0, &P1OUT

bic.b #BIT1, &P2DIR
bis.b #BIT1, &P2REN
bis.b #BIT1, &P2OUT
bis.b #BIT1, &P2IES

bic.b #BIT1, &P2IFG
bis.b #BIT1, &P2IE

bis.w #GIE, SR

main:
jmp main

ISR_S1:
xor.b #BIT0, &P1OUT
bic.b #BIT1, &P2IFG
reti
; Stack Pointer definition

.global __STACK_END

.sect .stack

; Interrupt Vectors
.sect ".reset" Reset Vector and Written by the CCS compiler
.short RESET

.sect ".int42"

.short ISR_S1

Setup S1 as a port interrupt
- Set port direction to input (P2DIR.1=0)
- Enable Pull-Up/Down Resistor (P2REN.1=1, not needed for LaunchPad)
- Configure resistor as pull-up (P2OUT.1=1 not needed for LaunchPad)
- Set IRQ sensitivity High-to-Low (P2IES.1=1), means to toggle when button is pressed
- Clear Interrupt flag (P2IFG.1=0)
- Assert Local enable (P2IE.1=1)
- Assert Global enable (GIE=1,)

Set LED1 to be output (P1DIR.0=1)
Clear LED 1 initial (P1OUT.0=0)

Main program, doesn’t do anything but loop forever. However, it can also do
something(s) and they must be before jmp main

ISR toggles LED1 and clears the P2IFG.1 flag to return to normal program flow

Written by the CCS compiler

Our Port2 interrupt is .int42. For Port1, .int47 must be used

Remember this!

