EEE 204

Introduction to Interrupts

Dr Mahmut AYKAC

Introduction to Interrupts

* An interrupt is an approach to dealing with external, asynchronous events by
building hardware into the MCU that handles identifying and prioritizing events to be
serviced by the CPU.

* The interrupt system uses the concept of a flag to notify the CPU that an external
event on a peripheral has occurred and action is requested.

 This approach allows the CPU to continue its normal instruction execution and only
act when a flag is seen.

- When a flag is observed, the CPU completes its current instruction and then
executes a sequence of instructions (written by the programmers) that
accomplishes the desired action for the peripheral.

* The code that is executed when an interrupt occurs is called an Interrupt Service
Routine (ISR) or interrupt handler.

Interrupt Priority and Enabling

* Interrupts have a priority system that ranks each external peripheral from highest to
lowest. This provides a means to handle multiple interrupts that occur at the same time
and are simultaneously requesting service from the CPU.

*An MCU has three categories of interrupts (sorting from highest to lowest)

» System Resets; They are the most critical because they cause the MCU to start its operation from the
beginning. This includes putting all configuration registers at their default values, initializing the program
counter, and entering the main program at its first instruction.

» Non-maskable Interrupts (NMIs); They are the second highest priority interrupts and typically handle
fault conditions on the MCU. Examples of non-maskable interrupts are memory access errors and
oscillator faults. When maskable interrupt occur, it can be handled after executing the current instruction.

» Maskable Interrupts (Mls). They are the third category of interrupts and are the interrupts that handle
all of the common peripherals on an MCU (i.e., ports, timers, serial communication, ADC, and DACs).
Maskable interrupts have both global and local interrupt enables. The GIE bit in the status register is
used as the global enable for all maskable interrupts. When it is set (GIE = 1), then maskable interrupts
are allowed. Upon reset GIE = 0, meaning no maskable interrupts are enabled. When non-maskable
interrupts occur, the current instructions and status are stored in stack for the CPU to handle the
interrupt.

Interrupt Priority and Enabling

Each peripheral system then has a local interrupt enable (IE) that is configured in the
control/status registers within the memory map. The global and local interrupt enable bits can be
thought of as gating switches that allow the peripheral’s flag to be observed by the CPU when
configured.

Local Local

Interrupt | e bt Interrupt Simply, If Global Interrupt (GIE) is

Priority
Source £1.g(IFG) Enable (IE)

. CPU Enable, Local Interrupt (IE) is Enable and

Highest Timers . .
Local Interrupt Flag (IFG) is Logic 1,

[0 —1 Interrupt Service Routine is invoked.
Watchdog e "ﬁt:f:lln While Global Interrupt Enable and Local
= Enable (GIE) Interrupt Enable are set manually in the

eusci —)0] | gllE) _@ = P y

Ao . al— Panding program, Local Interrupt Flag becomes
logic 1 if the correspondent event is
S Y =i realized. These events can be timer
SACs —-IEI—ZI—— overflow/compare, port interrupts or any
Lowest BREE _E_El_ of them given in the Interrupt Source

L In) column given in the figure.
rv?gu PenphetaIE)ntrolfSlatus
Peripherals Registers

Fig. Conceptual model for global and local interrupt enables

Interrupt Vectors

The beginning of an ISR is marked with an address label in the main.asm file. This
address label serves as the starting address to be put into the PC when the ISR is
called. The way that the CPU retrieves the starting address of the ISR to put into the
program counter uses the concept of an interrupt vector.

Each peripheral system that is capable of generating an interrupt is assigned a
dedicated address location at the end of the program memory space. The address is
calleg the peripheral’s interrupt vector address and will hold the starting address of
the ISR.

Since there are numerous peripherals that each require a unique vector, the
addresses consume a block of memory called the interrupt vector table.

The starting address of the ISR is put into the interrupt vector table when the
program is downloaded.

Interrupt Service Routine (ISR) is a function that hardware invokes in response to
an interrupt.

Interrupt Vectors

Addr Data
" 8000h
i The developer writes the ISR
Main Program Loop, in the main.asm file. The
Subroutines, Program Memory starting address of the ISR is
& < i marked with an address label.
Interrupt Service
Routines
The full MSP430 architecture
supports up to 64 separate & Priority
interrupt vectors whose addresses FF80h Vector0 owe The IRQ vector is loaded
are located within the range Interrupt ‘r . o with the starting address of
FFSOH- FFFEH Vector Table FF82h Vector1 its ISR upon download.
. The developer is
The vector addresses are . responsible for doing this
hard-coded to MCU : . :
J in the main.asm file using
peripherals and are found | FFFCh| Vector62 directives and the ISR
in the device-specific FFFEh Vector63 Highest address label.
data sheet. .

Fig. Interrupt vector table concept

Interrupt Vectors

Figure shows a graphical depiction of how the interrupt vector table is initialized using the starting addresses of
ISRs and assembler directives. In this figure, three interrupt vectors are initialized: reset, vector 22, and vector
25. Vectors 22 and 25 represent maskable interrupts that have ISRs that are executed when serviced. The
starting addresses of these routines (named ISR1 and ISR2) are placed into their respective vector locations
using the assembler directives .section and .short.

Label Addr Data

RESET mov.w # STACK_END,SP
RESET 8000h [7031h " StophDT mov.w #WOTPW|WDTHOLD, 8WDTCTL
goozh [3eoon |
8004h | 40B2h P ; Main loop here | Note: This code doesn't
8006h [5AB0R % jom e work Kisstan
exampie of initiaization.
~8008h | o01cCh W Dontiry 10 fyn on your
. main 800Ah | 4303h : s LaunchPad'" board!
vector 63 handles the highest sooch | _3FFER_|f i
o . ISR1 800Eh [5405h
pr|(.)r|ty. interrupt in the MCU, soton =11 JEE
which is reset. This vector holds ISR2 8012h | 8405h sdda i
. 8014h 1300h .
the starting address of where to w
begin executing code when the : { S Ll
. ret
MCU is reset or powered up. :
Vector 22 FFCEn| 800Eh [}, N o feivicr i ity st
- ., 3 Interrupt Vectors
Vector25 FFo4n| eotzn [} >~
. b] “.‘ { .sect “.reset”
. * N .short RESET
Vector 63 FFFEh | 8000h X °
L8 L .sect ".int22"
The vector table holds the b { .short ISR1
starting addresses of *, . E
where to load PC when ".{ -sect -int25
the interrupt occurs. E o2

Fig. A graphical depiction of initializing the interrupt vector table

Interrupt Service Routines

An interrupt service routine is written in a similar manner as a subroutine. They both need
to start with an address label and contain instructions to be executed when called; however,
an ISR must end with a dedicated instruction called return from interrupt (reti). The
reti instruction will pop the SR and PC off of the stack in order to return the CPU execution
back to the main program.

Another critical role of a maskable ISR is that it must clear the peripheral’s local interrupt
flag (IFG) that caused the interrupt in the first place. If the IFG is not cleared, then as soon
as the ISR completes and the CPU returns to the main program, it will be immediately

interrupted again because the flag is still asserted. This leads to an infinite ISR loop
that the CPU can never get out of.

ISRs should be short, fast, and dedicated to only performing the functionality needed by the
peripheral at that time. A good ISR should impact the rest of the MCU as little as possible.

Interrupt Servicing Summary

Figure shows a flow chart of the steps that are taken when an IRQ (Interrupt Request) is serviced. Note that
some of the steps are taken automatically by the CPU while some are up to the developer.
This can only happen for maskable interrupts if
} the peripheral has t?een initiali;ed and en_ab!ed
’ Ry O lope prior stis g Seiman When using maskable interrupts, it is important to keep in
'-\

program loop.
mind which tasks are taken care of automatically by the MCU

Complete Current
Instraction and those that the developer must do. When using a specific
Push PCand SR peripheral with a maskable interrupt, the developer has the
onto Stack following responsibilities:
v »> The MCU does these steps automatically. 1. Configure the peripheral for the desired functionality.
ol 2. Clear the peripheral’s interrupt flag (IFG).
v 3. Assert the local interrupt enable (IE) for the peripheral.
Retrieve Starting . . .
Address of ISR, 4. Assert the global interrupt enable (GIE) in the status register.
Eutine Be 5. Write the ISR with an address label to mark its starting
v - location and the reti instruction to denote its end.
Execute ISR Thie ISR riist Be wilkian by the deslopas. Remember that the ISR must clear the peripherals local
>The et interrupt flag (IFG) so that when the ISR completes, the
Pogofsagg:c) ISR that causes the CPU to pop SR & PC. peripheral doesn’t inadvertently trigger another IRQ.

6. Initialize the vector address for the peripheral using the ISR

Continue Main address label and assembler directives.
Program Execution

Interrupt Servicing Summary

System Reset —

Non-maskable Interrupts —

Maskable Interrupts —

\ [

\ [

SYSTEM

WORD

Port
Interrupts

INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT | ADDRESS IORITY
System Reset
Power up
External reset WDTIFG, KEYV (SYSRSTIV)(")2) Reset OFFFEh | 63, highest
Watchdog time-out, password violation
Flash memory password violation
Systom NMI SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
Vacaﬂ xm b::ms VLRL[F?M;éTjﬂr:Eg, (\g:gg:slﬁmawe_ (Non)maskable | OFFFCh 62
User NMI
LI, NMIFG, OFIFG ACCVIEG, BUSIFG | (uommaskavie | 0feFan | o1
Flash memory access violation
Comp_B Comparator B interrupt flags (CBIV)(1) (3) Maskable OFFF8h 60
TBO TBOCCRO CCIFGO®) Maskable OFFF6h 59
T80 TR e (oo B CCIFeS. Maskable OFFF4n 58
‘Watchdog Timer_A interval timer mode WDTIFG Maskable OFFF2h 57
USCI_AD receive or transmit UCAORXIFG, UCADTXIFG (UCADIV)(') B3 Maskable OFFFOh 56
USCI_BO receive or transmit UCBORXIFG, UCBOTXIFG (UCBOIV) 1) (3) Maskable OFFEEh 55
ADC12_A ADC12IFGO to ADC12IFG15 (ADC12V)N @ @1 Maskable OFFECh 54
TAD TAOCCRO CCIFGO® Maskable OFFEAh 53
TAD TAOCCR1 1935,%'(%2:‘3)%%‘ CCIFG4, Maskable OFFESh 52
USB_UBM USB interrupts (USBIV)(") Maskable OFFEBh 51
DMA DMAOIFG, DMA1IFG, DMA2IFG (DMAIV)(!) 3} | Maskable OFFE4h 50
TA1 TA1CCRO CCIFGO® Maskable OFFE2h 49
- TATCCRI COFGTOTAICCRICORS2 | yagiae | orreon | 48
110 port P1 P1IFG.0 to PAIFG.7 (P1IV)D B Maskable OFFDEh 47
USCI_A1 receive or transmit UCA1RXIFG, UCA1TXIFG (UCATIV))) Maskable OFFDCh 46
USCI_BA1 receive or transmit UCB1RXIFG, UCBATXIFG (UCB1IV)) @ Maskable OFFDAh 45
TA2 TA2CCRO CCIFGO®® Maskable OFFDS8h 44
TA2 TAacCRI 193;%‘('70.&;?31&?512 CeIFa2, Maskable OFFD6h 43
/0 port P2 P2IFG.0 to P2IFG.7 (P2IV)\) 3 Maskable OFFD4h 42
RTC_A RJ%%%‘[';‘;? hﬂg;%ﬁ%ﬁ%ﬁg- Maskable 0FFD2h 41
OFFDON 40
Reserved Reserved!®) : :
OFF80h 0, lowest

Fig. MSP430F5529 interrupt vector table (for assembly)

MSP430F5529 Port Interrupts

The port interrupt system provides a prioritization scheme that can speed up determining
which bit of the port should be serviced first if multiple IRQs occur on a port simultaneously.
The port interrupt system prioritizes bit 0 as the highest priority and bit 7 as the lowest
priority within the port. Dedicated registers called the Port Px Interrupt Vector Word (PxIV, or

P11V and P21V) registers are used to indicate priority when simultaneous port IRQs have
occurred.

PxIV is loaded with a unique number corresponding to the bit that has just triggered an IRQ
and also has the highest priority of any bits within the port that may have also triggered an
IRQ. This number can be used within the service routine to quickly jump to the code
associated with the highest priority bit. PxIV does not have a bitwise correspondence to the
port bit that caused the interrupt. The values it takes on represent which of the 8 inputs is
pending with the highest priority. The values it will take on are: bit0 = 02h, bit1 = 04h, bit2 =
06h, bit3 = 08h, bit4 = 0Ah, bitd = 0Ch, bit6 = 0Ch, and bit7 = 10h.

MSP430F5529 Port Interrupts

Each bit within ports 1 and 2 on the MSP430F5529 has the ability to trigger an interrupt when
configured as an input and there is a transition on its pin. Ports 1 and 2 each have their own dedicated
vector address; however, each bit within each port all share the port’s vector. So, it is the job of the
developer to determine which bit triggered the interrupt manually and which part of the associated ISR
to execute to service that bit.

The local enable for the port interrupts are configured in the Port Px Interrupt Enable (PxIE, or P1IE,
and P2IE) registers. Each bit within PxIE corresponds to the bit of the port (i.e., bit 0 of P1IE enables
the interrupt on bit 0 of P1). A 0 in PxIE indicates that the interrupt for that bit of the port is
disabled. A 1 in PxIE indicates that the interrupt for that bit of the port is enabled. PxIE is
cleared on reset, disabling the port interrupts. Since the port interrupts are maskable, the global
interrupt for all bits is the GIE bit in the status register.

The flags for the port interrupts are held in the Port Px Interrupt Flag (PxIFG, or P1IFG and P2IFG)
registers. Upon reset, all bits in PxIFG are set to 0. Upon an interrupt, the flag is asserted. Each bit
within PxIFG corresponds to the bit of the port (i.e., if bit 0 of P1IFG is asserted it means an interrupt

has occurred on bit 0 of P1). Once a port IRQ is serviced, the bit’s flag needs to be cleared in
PxIFG by the developer.

MSP430F5529 Port Interrupts

The last configuration setting for port interrupts is the ability to select which
transition polarity triggers the interrupt (i.e., rising or falling). The Port Px Interrupt
Edge Select (PxIES or P1IES and P2IES) registers. A 0 in this register means the
IRQ will be triggered on a low-to-high transition on the pin. A 1 in this register
means the IRQ will be triggered on a high-to-low transition. Each bit within this
register corresponds to the bit in the port it configures (i.e., if bit 0 of P1IES is a 1,
then a high-to-low transition on bit O of P1 will trigger an IRQ).

MSP430F5529 Port Interrupts

Figure gives a summary of the port interrupt configuration registers.

Port X Interrupt Enable Register (PxIE)
p: 7 8 5 4 3 2 1 o0

0 = Corresponding port bit interrupt disabled.
Tl 111 " | © | 1= Corresponding port bit interrupt enabled.
Value on o 0 0 0 (Read/Wite)
i 0 0 o0 o0
Port X Interrupt Flag Register (PxIFG)
p: 7 6 5 4 3 2 1 0
0 = No interupt pending on corresponding port bit
R O e e " | 7 | 1=Intemupt is pending on corresponding port bit.
vaweon 5 o o0 0 o0 o0 o0 o (ReadWike)

Reset:

Port X Interrupt Edge Select Register (PxIES)
p: 7 868 5 4 3 2 1 0
| _ | _ I i | i | _ I _ |] | _ 0 = Corresponding port bit is sensitive to

low-to-high transitions.

Value on 1 = Corresponding port bit is sensitive to
Resel v e & 9 u e 9 9 high-to-low transitions.
(Read/VWrite)

Port X Interrupt Vector Word (PxIV)
p: 15 14 13 12 1 9 8 7 6 5 4 3 2 1 0

e ST e o o oo T2}

Reset: 00h = No Interrupt Pending
02h = Interrupt Source = PxIFG.0 (highest priority)
04h = Interrupt Source = PxIFG.1
06h = Interrupt Source = PxIFG.2
08h = Interrupt Source = PxIFG.3
0Ah = Interrupt Source = PxIFG 4
0Ch = Interrupt Source = PxIFG.5
0Eh = Interrupt Source = PxIFG 6
10h = Interrupt Source = PxIFG.7 (lowest priority)
(Read Only)

FiE. Summarx of Eort interruet confiEuration reﬁisters

MSP430F5529 Port Interrupts

When using port interrupts, there is a recommended initialization sequence to avoid
inadvertent bit assertions of flags due to the nature of power on. The recommended
sequence from the MSP430F5529 data sheet to configure a port interrupt is as follows:

1. Initialize the port direction (PxDIR), pull-up/down resistor (PXREN), the pull-
up/down resistor polarity (PxOUT), and the port interrupt edge select (PxIES).

2. Clear the port interrupt flags (PxIFG) for first use. Note that the reset value for
PxIFG=00h, but often bits will be asserted inadvertently due to step 1.

3. Assert the local port interrupt enable (PxIE).
4. Assert the global enable for maskable interrupts (GIE bit in SR).

MSP430F5529 Port Interrupts, Example:

Let's now look at configuring the push-button switch S1 on the LaunchPad board to trigger a port
interrupt. Let's design a program that will toggle LED1 each time S1 is pressed using an interrupt.
First, let’'s look at the signal behavior of S1 when pressed. Figure shows a graphical depiction of the
logic levels and transitions that occur when S1 is pressed and released.

A few things to keep in mind when setting up a push-button interrupt:

press reease e S1 is connected to Port2, bit 1. While the logic level of S1 can be observed on P2.1, when using an

s1 |V) | interrupt, we don’t have to look at this bit. We instead allow a transition to assert an interrupt flag and
\‘Ee;s_ ppq | M Hoho Low ! ——— have the CPU execute an ISR accordingly.

r 0 e Tesrsiion e S1 is a switch that is connected to Vcc. This means we don’t need a pull-up resistor on the MCU to

— v A—,— provide the logic HIGH state when S1 is not pressed. If we want the IRQ to trigger immediately upon a

e fptigvreen Lo OW lometicns button press, then we need to configure the interrupt edge sensitivity (P2IES.1) to be high-to-low. When

S1is not pressed, P2.1 is at a logic high. When the button is pressed, P2.1 goes to a logic low. If we leave

Fig. Signal behaviour of P2.1 when S1 is pressed the P2IES.1 sensitivity at its default value of low-to-high sensitivity, the interrupt will only trigger once S1

and released is released.

* Since we are only using one bit within P2 to trigger an IRQ, we don’t need to use the P2IV register to
determine the highest priority bit that caused the IRQ. We will simply use the P2IFG register knowing that
we only care about bit1.

* The port 2 interrupt vector address is FFD4h. This has a CCS section name of .int42. This is the name we
will use when we initialize the vector address using assembler directives.

e In the ISR, we will need to toggle LED1, clear the P2IFG.1 flag, and use reti to return from the
interrupt.

MSP430F5529 Port Interrupts, example

init : 7 Local Local

bis.b #BIT@, &1DIR | SetLED1 to be output (P1DIR.0=1) Priority 'gerebt Interrupt Interrupt

bic.b #BITO, &P1OUT | Clear LED 1 initial (P1OUT.0=0) _ Flag(IFG) Enable(IE) o

- Highest — Timers

b%c.b #BIT1, &P2DIR Setup S1 as a port interrupt chgmm;-{Z}--{EfE}—

E?S'g ::i;i’ §E§EE¥ - Set port direction to input (P2DIR.1=0) o —9] Qlobal
1s. ’ - Enable Pull-Up/Down Resistor (P2REN.1=1, not needed for LaunchPad)) Interrupt

bis.b #BIT1, &P2IES . . Uaet m Enable (GIE)

- Configure resistor as pull-up (P20UT.1=1 not needed for LaunchPad) * 0] —E IRQ
bic.b #BIT1, &P2IFG | - SetIRQsensitivity High-to-Low (P2IES.1=1), means to toggle when button is pressed ADC 0] [o] Fending
bis.b #BIT1, &P2IE - Clear Interrupt flag (P2IFG.1=0) S - —

- Assert Local enable (P2IE.1=1) sl
bis.w #GIE, SR - Assert Global enable (GIE=1,) SACS _’@_E—

- Lowest Ports —D—E—
main: Main program, doesn’t do anything but loop forever. However, it can also do e - J
jmp main something(s) and they must be before jmp main i
ISR_S1:

xor.b #BITO, &P10UT Remember this!

bic.b #BIT1, &P2IFG]» ISR toggles LED1 and clears the P2IFG.1 flag to return to normal program flow
reti
; Stack Pointer definition

.global __ STACK_END . .
.sect _stack Written by the CCS compiler

5 Interrupt Vectors
.sect ".reset" Reset Vector and Written by the CCS compiler
.short RESET

.sect ".int42" Our Port2 interrupt is .int42. For Portl, .int47 must be used
.short 1ISR_S1

